A Comprehensive Analysis of the Surge in Lithium Battery-Related Fires with Leveraging Machine Learning
dc.contributor.author | Mendis, BRS | |
dc.contributor.author | Weerasinghe, UR | |
dc.contributor.author | Lakshan, APK | |
dc.contributor.author | Udugamasooriya, SD | |
dc.date.accessioned | 2025-01-16T17:30:35Z | |
dc.date.available | 2025-01-16T17:30:35Z | |
dc.date.issued | 2024-09 | |
dc.identifier.uri | http://ir.kdu.ac.lk/handle/345/8106 | |
dc.language.iso | en | en_US |
dc.subject | Lithium battery-related fires | en_US |
dc.subject | Electric Vehicles (EVs) | en_US |
dc.subject | Lithium-ion batteries | en_US |
dc.subject | sustainable transportation | en_US |
dc.subject | risk assessment | en_US |
dc.subject | clustering, classification | en_US |
dc.title | A Comprehensive Analysis of the Surge in Lithium Battery-Related Fires with Leveraging Machine Learning | en_US |
dc.type | Article Abstract | en_US |
dc.identifier.faculty | FMSH | en_US |
dc.identifier.journal | KDU IRC | en_US |
dc.identifier.pgnos | 33 | en_US |