Show simple item record

dc.contributor.authorGunarathna, WA
dc.contributor.authorNasir, HM
dc.date.accessioned2018-05-21T10:41:10Z
dc.date.available2018-05-21T10:41:10Z
dc.date.issued2013
dc.identifier.urihttp://ir.kdu.ac.lk/handle/345/1118
dc.descriptionarticle full texten_US
dc.description.abstractLet P={p0,p1,...,pn-1] denote the collection of the first n Legendre polynomials pk of degree k and let X={x0,x1,...,xn-1} be a set of n sample points. The Discrete Legendre polynomial transform (DLT) of an input vector,f=(f0,f1,...,fn-1)of size n is defined by {L(0),L(1),...L(n-1)},where L(l)= for each j=0,1,...,n-1. For the given collection of n Legendre polynomials, the straightforward method for computing DLT requires an O(n3) computational cost. This cost gets prohibitively increased for large values of n and hence it is too much for practical purpose. This paper describes an algorithm for fast computation of DLTs. The fast algorithm computes the DLT of any input vector of size non a set of n arbitrary sample points in an O((nlog2n)2) cost of complexity. The numerical experiments carried out demonstrate that the fast algorithm is faster than the straightforward algorithm when n>128.en_US
dc.language.isoenen_US
dc.subjectFast Fourier transform (FFT)en_US
dc.subjectOrthogonal polynomialsen_US
dc.subjectlegendre polynomial transformsen_US
dc.subjectlinear three term recurrence relationen_US
dc.titleFast transform algorithm for legendre polynomial transformsen_US
dc.typeArticle Full Texten_US
dcterms.bibliographicCitationGunarathna, W., & Nasir, H. (2013). Fast transform algorithm for legendre polynomial transforms. In KDU International Research Symposium Proceedings (pp. 248-263). General Sir John Kotelawala Defence University. https://doi.org/http://ir.kdu.ac.lk/handle/345/1118
dc.identifier.pgnos248-263en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record