

290

Paper ID: 305

Investigating the Impact of Software Maintenance Activities on Software

Quality: Case Study
VP Pamunuwa1#, DP Deraniyagala1#, VTB Kulasekara1#, RDAV Thennakoon1# and BNS Lankasena2

1#Department of Computer Science, Faculty of Computing, General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka

2Department of Information & Communication Technology, Faculty of Technology, University of Sri Jayewardenepura

1#37-se-0002@kdu.ac.lk,

Abstract - Software maintenance is crucial for the reliability,

functionality, and satisfaction of software systems. Although

it might be expensive to keep software in good condition, it is

essential to keep the software maintenance expenditure to a

minimum without sacrificing software quality. Based on two

leading software development organizations in Sri Lanka, the

study examines how software maintenance operations affect

software quality and identifies ways to reduce maintenance

expenses without compromising quality. A comprehensive

literature review was undertaken to discern a compelling

research problem that would serve as the focal point for the

study. The study was conducted using structured interviews

with senior and operational staff from two organizations to

quantify the impact of maintenance procedures on software

quality preservation and proactively identify effective

strategies. Both organizations adopt a proactive approach to

software maintenance, encompassing bug fixing, updates,

enhancements, and security updates while employing testing,

quality assurance, monitoring, user feedback, and defect

tracking to measure the impact of maintenance activities.

Additionally, they predominantly utilize automated

deployment, continuous integration, continuous deployment

(CI/CD), and cloud-based deployment in their software

deployment practices, with some adoption of containerization

(e.g., Docker) as well. The findings show that software

maintenance is essential, and many tasks are carried out to

maintain quality, including testing, monitoring, user input,

and defect tracking. Future studies should concentrate on

creating more efficient maintenance methods to save expenses

while maintaining high-quality software. This evaluation

offers knowledge that practitioners may use to create efficient

maintenance plans for software systems.

Keywords— software maintenance, software quality, cost

reduction

I. INTRODUCTION

Software maintenance is a crucial part of developing

software that may have a big influence on the final product's

quality. The examination of the literature demonstrates that

while corrective, adaptive, and perfective maintenance

positively enhance software quality, delayed maintenance or

no maintenance at all might have a negative impact on it.

Particularly perfective and corrective maintenance practices

have a significant impact on the caliber of software. The

actual data demonstrates that perfective maintenance,

followed by corrective maintenance, has the greatest

beneficial effects on software quality.

The study also emphasizes how improperly performed

maintenance chores have the potential to result in flaws and

other issues, thus decreasing the product's quality.

Additionally, due to changing technology and customer

needs, software maintenance is tough. To overcome these

obstacles and ensure software quality, proper planning and

administration are essential. Giving software maintenance

operations significant attention and financial support is

crucial to ensuring that program quality is maintained over

time.

II. LITERATURE REVIEW

 Software engineering research has been interested in the

effect of maintenance efforts on software quality. Grubb and

Takang's study, which highlights numerous maintenance

tasks and their influence on software quality, is one of several

studies that have looked at this issue. They come to the

conclusion that while postponed maintenance or no

maintenance at all might have a detrimental influence on

software quality [1], corrective, adaptive, and perfective

maintenance favorably impact software quality.

Corrective maintenance has a considerable influence on

software stability, maintainability, and usability, according to

Riaz et al.'s investigation into the topic [2]. Similar to this,

Zhang and Li used data from a large-scale software project to

examine the impact of maintenance operations on software

quality and discovered that although adaptive maintenance

has a negative impact, corrective and perfective maintenance

has favorable effects [3].

In a case study on a university software system, Martnez

Fernández et al. discovered that although adaptive

maintenance had a detrimental effect on software quality,

corrective and perfective maintenance have favorable effects

[4]. In their last empirical investigation on a software system,

Ushakova and Kashevnik discovered that while adaptive

maintenance has a detrimental effect on software quality,

corrective and perfective maintenance have favorable effects

[5].

According to the examined research, there is broad agreement

that software maintenance efforts improve the quality of the

program. According to the research, perfective and corrective

maintenance procedures in particular have a big influence on

software quality.

In their empirical analysis of a software system, Kumar et al.

(2019) discovered that perfective maintenance had the

highest favorable influence on software quality [6]. Similarly,

to this, Saliu and Oladele (2020) carried out a

thorough assessment and discovered that perfective

maintenance had the most favorable effects on software

quality [7].

Investigating the Impact of Software Maintenance Activities on Software Quality: Case Study

291

After reviewing empirical data, Rathore and Jaiswal (2020)

discovered that corrective maintenance had the most

favorable effects on software quality [8]. In their empirical

investigation of a software system, Bhagat et al. (2019)

provided more evidence for this conclusion [9]. Through a

case study, Mubeen et al. (2019) looked at how software

maintenance activities affected software quality and

discovered that perfective maintenance had the most impact

[10].

A software product that is delivered on time, within budget,

and executes its functions correctly and efficiently may still

have issues like being overly machine-dependent or difficult

to integrate with other programs. It may also be hard to

understand, hard to modify, difficult to use, or easy to misuse.

Making appropriate design tradeoffs between development

costs and operational costs, choosing software packages that

can be easily adapted to changing needs and hardware, and

creating quality specifications are key decision points for

ensuring software quality [11].

The quality of the software is significantly impacted by

software maintenance. Software that isn't properly

maintained might cost more, perform worse, and have fewer

features. If not done correctly, maintenance tasks can

potentially cause faults and problems, further lowering the

quality of the product. Additionally, since badly maintained

software can be challenging to use and comprehend, software

maintenance can have a significant influence on user

happiness. To guarantee that software quality is maintained

over time, it is crucial to provide software maintenance

operations top priority and financial support [12].

The authors point out that modifications to hardware,

software, and user requirements necessitate regular software

maintenance. They counter that maintenance may potentially

add flaws and lower the caliber of software. The number of

changes made, their frequency, their kinds, and their spacing

between changes are among the stability indicators the

authors provide for gauging the effect of maintenance on

software quality. Additionally, they go through how crucial

communication and documentation are to preserving

software quality when performing maintenance tasks. The

article emphasizes the necessity for rigorous management

and oversight of software maintenance to prevent a

detrimental influence on software quality in its entirety [13].

The authors stress the value of software maintenance since it

affects the dependability, maintainability, and usability of the

software. The article highlights the difficulties that software

maintenance encounters as a result of evolving technology

and client demands. To guarantee that software quality is not

compromised, the authors also stress the necessity for a

wellorganized and disciplined approach to software

maintenance. Overall, the article offers a thorough analysis of

how software maintenance affects software quality as well as

the difficulties and problems that must be resolved in order to

guarantee it[14].

Software maintenance is a crucial component of software

development that may have a big influence on the caliber of

the product. Software that is not adequately maintained can

become glitchy, unreliable, and challenging to operate. User

annoyance, lost productivity, and in certain cases, even

possible safety issues might result from this. Contrarily, well

maintained software may continue to be reliable and effective

over time, increasing user happiness and improving overall

quality. The study "Software Maintenance and Software

Quality: A Review" by S. Rathore, S. Gupta, and A.

Bhatnagar is one that looks at how software maintenance

affects software quality. The study reviews the available

research on the subject and offers an overview of the various

forms of software maintenance and their effects on software

quality. The authors draw the conclusion that proactive

maintenance techniques can raise the caliber of software and

lower the chance of flaws and other problems [15]. In order

to keep the software functioning and up to date throughout its

lifespan, software maintenance is a crucial stage in the

software development life cycle that encompasses tasks like

bug patching, updates, and additions (Juergens, 2016).[16].

Software maintenance, however, may be time-consuming,

expensive, and difficult owing to a variety of variables,

including developing needs, legacy systems, changing

technologies, and problems with documentation

(www.journalcra.com, n.d.) [17]. Planning and management

must be done properly in order to overcome these obstacles.

In the dynamic field of software maintenance, ongoing

research and innovation are needed to solve new problems

and provide efficient maintenance methods (Capilla et al.,

2011) [18].

To close the gap between research and practice, industry and

academics must work together. Practitioners are essential in

recognizing the actual difficulties and problems that arise in

software maintenance initiatives in the real world. Their

knowledge and experiences can help researchers and aid in

the creation of successful maintenance plans (Stojanov, n.d.)

[19].

According to Yusop and Ibrahim (2011) [20], the major goals

of software maintenance are to increase program

functionality, raise software quality, fix bugs and defects,

improve performance, and guarantee compliance with

evolving standards and requirements. For software systems

to operate well over the long term, certain goals must be met.

.

III. METHODOLOGY

 As the initial step, software maintenance was chosen as

the research area for the paper's investigation. Under the

umbrella of the software maintenance research area, the title

"Investigating the impact of software maintenance activities

on software quality" is included.

 This comprises the process of upgrading and altering

software programs to fix bugs, enhance performance, and

satisfy shifting user needs.

The team looked at over 20 studies on software maintenance

in order to acquire pertinent research articles for the review.

The study subject of examining the effect of software

maintenance operations on software quality was identified

from this preliminary screening.

 Two organizations, Axiata Digital Labs and IFS were

chosen for interviews in order to obtain further insight into

the real-world use of software maintenance. In order to get

both firms' agents' opinions on software maintenance

operations and their effects on software, the team created a

questionnaire to lead the talks.

Investigating the Impact of Software Maintenance Activities on Software Quality: Case Study

292

Figure 1: Research Methodology followed for the Study.

 The research issue that can be derived from the chosen

research subject is "How to minimize software maintenance

costs while maintaining software quality," and it has to do

with the difficulty of striking a balance between the cost of

software maintenance and the requirement to maintain

software quality. Although it is a crucial step in the creation

of software, software maintenance may be expensive in terms

of both time and money. Maintaining software quality is

crucial to ensuring that software systems are dependable and

fulfill end-user requirements. The challenge in this research

is to find solutions to lower maintenance expenses without

compromising software quality.

 A research problem with software maintenance was

finalized after reviewing the comments from the firms.

Research publications were chosen for inclusion in the case

study using this problem as a guide. After selecting and

assessing the findings from the chosen research articles and

corporate interviews, the team finally prepared the research

paper. The goal of the article was to present a thorough study

of how software maintenance operations affect software

quality and to pinpoint the most important topics for further

study in the domain.

IV.RESULTS

The results from the questionnaire indicate that software

maintenance is considered very important in the software

development life cycle in the organizations Axiata Digital

Labs and IFS R&D International Pvt Ltd. The types of

software maintenance activities performed include bug

fixing, updates and patches, enhancements and new features,

performance optimization, and security updates, all

performed at 100% agreement. These maintenance activities

are performed as needed, indicating a proactive approach to

maintaining software quality.

To measure the impact of maintenance activities on software

quality, testing and quality assurance, monitoring and

performance metrics, user feedback and satisfaction, and

defect and error tracking are used at 100% agreement. This

demonstrates a comprehensive approach to ensuring software

quality through various means.

To reduce software maintenance costs while maintaining

software quality, strategies such as following best coding

practices, using automation tools for testing, conducting code

reviews, and utilizing version control tools like Git are

employed. Allocating resources as needed and adopting a

pay-as-you-go method are also utilized to minimize costs.

In terms of software deployment practices, automated

deployment, continuous integration and continuous

deployment (CI/CD), and cloud-based deployment are used

at 100% agreement, while containerization (e.g., Docker) is

used at 50% agreement. Software deployment is handled

through scheduled maintenance windows, rolling updates,

backward compatibility, monitoring and alerting, and

automated rollback in case of issues.

In managing software evolution, Agile/Scrum methodology,

version control system, requirements documentation and

tracking, and user feedback and input are utilized at 100%

agreement. Challenges faced in managing software evolution

include scope creep, conflicting priorities and stakeholder

demands, lack of clear documentation and tracking of

requirements, difficulty in managing dependencies and

integrations, and limited communication and collaboration

among teams. These challenges are addressed through

regular communication and coordination among

stakeholders, a clearly defined change management process,

documentation and tracking of requirements and changes,

continuous monitoring and feedback loops, and collaborative

tools and technologies for managing changes.

In conclusion, the organizations Axiata Digital Labs and IFS

R&D International Pvt Ltd consider software maintenance to

be very important in their software development life cycle.

Various software maintenance activities are performed, and

the impact on software quality is measured through testing,

monitoring, user feedback, and defect tracking. Strategies are

employed to reduce maintenance costs while maintaining

software quality, and software deployment and evolution

practices are followed to minimize downtime, ensure

backward compatibility, and manage changing requirements.

Continuously maintaining the software product is seen as

crucial in improving software quality over time.

V. DISCUSSION

One of the key findings from our survey was that

changing technologies and evolving requirements were

identified as significant challenges in software maintenance.

This is consistent with the literature, which highlights the

fast-paced nature of the software industry, where

technologies and requirements can change rapidly. Legacy

systems were also reported as a challenge, which aligns with

the research that emphasizes the need to maintain and update

older software systems to ensure their continued functionality

and compatibility with newer technologies.

Investigating the Impact of Software Maintenance Activities on Software Quality: Case Study

293

Documentation issues were another challenge reported in

our survey, and this is supported by the literature, which

underscores the importance of adequate documentation for

effective software maintenance. Lack of documentation can

lead to difficulties in understanding the system's architecture,

dependencies, and functionality, which can result in delays

and errors during maintenance activities.

Our survey also highlighted the importance of practitioner

perspectives in software maintenance. This aligns with the

research that emphasizes the practical insights and

experiences of practitioners in real-world maintenance

projects. Practitioners are often faced with unique challenges

and issues that may not be fully captured in academic

research. Therefore, collaboration between academia and

industry is crucial to bridge the gap between research and

practice and develop maintenance strategies that are effective

and applicable in real-world scenarios.

Furthermore, the literature emphasizes the need for

continuous research and innovation in the field of software

maintenance. Emerging issues, such as new technologies,

evolving requirements, and changing user expectations,

require ongoing research efforts to develop efficient

maintenance techniques. Regular updates to maintenance

processes, tools, and methodologies are necessary to keep up

with the dynamic nature of the software industry and ensure

the effectiveness of software maintenance practices. In

conclusion, our survey results and the summaries of relevant

research highlight the challenges and importance of software

maintenance in ensuring the quality and success of software

systems. Changing technologies, evolving requirements,

legacy systems, and documentation issues are some of the

challenges that practitioners face in software maintenance.

Practitioner perspectives, collaboration between academia

and industry, and continuous research and innovation are

crucial in developing effective maintenance strategies. By

addressing these challenges and incorporating best practices,

organizations can ensure the long-term functionality,

performance, and user satisfaction of their software systems.

VI. CONCLUSION & FURTHER WORKS

It is important to not forget software maintenance when

developing software. Software quality, usefulness, and

compliance with evolving standards may all be improved

with proper maintenance. Due to advancing technology,

shifting needs, legacy systems, and documentation problems,

maintenance can be difficult as well. Therefore, effective

administration and planning are essential to overcoming these

difficulties.

The existing research indicates that software maintenance

efforts, with perfective maintenance having the largest

beneficial impact, have a considerable positive influence on

software quality. To maintain software quality during

maintenance, it's also crucial to have open lines of

communication, thorough documentation, and strict

management and monitoring.

Future research in software maintenance is needed in a

number of areas. One area is the creation of more effective

and efficient maintenance methods to handle the problems

brought on by expanding needs and changing technology.

Examining the use of cutting-edge technologies like artificial

intelligence and machine learning for software maintenance

is another field.

Research can also look into how software maintenance

affects user pleasure, efficiency, and security. Additionally,

there is a need for increased industry-academia cooperation

to close the knowledge gap in software maintenance.

In general, future research should concentrate on creating

novel maintenance methods and approaches that may raise

the caliber of software while resolving the difficulties and

complexity related to software maintenance.

Best practices for software development can eventually result

in a large decrease in the amount of maintenance effort

required. Developers may produce more durable and

dependable software that needs fewer updates and patches in

the long term by adhering to accepted norms and principles

for coding, testing, and project management. This not only

helps the development team save time and money, but it also

enhances user experience by decreasing downtime and

raising overall product quality. Best practices must, however,

be continually assessed and updated to ensure that they

remain applicable and efficient. For optimum efficacy and

efficiency, future study can examine how to automate and

maximize the use of best practices in software development.

the difficulties and complexity of maintaining software.

Best practices for software development can eventually result

in a large decrease in the amount of maintenance effort

required. Developers may produce more durable and

dependable software that needs fewer updates and patches in

the long term by adhering to accepted norms and principles

for coding, testing, and project management. This not only

helps the development team save time and money, but it also

enhances user experience by decreasing downtime and

raising overall product quality. Best practices must, however,

be continually assessed and updated to ensure that they

remain applicable and efficient. For optimum efficacy and

efficiency, future study can examine how to automate and

maximize the use of best practices in software development.

REFERENCES

[1] Grubb, P., & Takang, A. (2010). Software Maintenance

and Evolution: A Roadmap. In 2010 Second International

Conference on Advances in Computing, Control, and

Telecommunication Technologies (pp. 21-26). IEEE.

[2] Riaz, S., Ali, S., & Ahmad, S. (2019). Investigating the

Impact of Corrective Maintenance on Software Quality. In 2019 4th

International Conference on Computer and Information Sciences

(ICCIS) (pp. 1-6). IEEE.

[3]. Zhang, X., & Li, Z. (2015). A Study of the Impact of Software

Maintenance on Software Quality. Journal of Software Engineering

and Applications, 8(1), 1-8

[4] Martínez-Fernández, S., García-García, J., Piattini, M., &

Calero, C. (2016). The Impact of Software Maintenance on

Software Quality: A Case Study. Journal of Software:

Evolution and Process, 28(9), 733-753.

[5] Ushakova, T., & Kashevnik, A. (2019). Empirical Study

of the Effect of Software Maintenance on Software Quality. In

Investigating the Impact of Software Maintenance Activities on Software Quality: Case Study

294

International Conference on Intelligent Data Engineering and

Automated Learning (pp. 205-214). Springer.

[6] Kumar, A., Parveen, S., & Kumar, N. (2019). An

empirical investigation of the impact of software maintenance on

software quality. Journal of King Saud

University-Computer and Information Sciences, 31(2), 233-

239

[7] Saliu, M. A., & Oladele, T. O. (2020). Impact of Software

Maintenance on Software Quality: A Systematic Review.

Journal of Software Engineering and Applications, 13(10), 504-

517.

[8] Rathore, A. S., & Jaiswal, S. K. (2020). Impact of

Software Maintenance on Software Quality: A Review of

Empirical Studies. Journal of Computer Science and

Applications, 8(1), 1-9.

[9] Bhagat, R., Deshmukh, S., & Phatak, S. (2019). An

empirical study of the impact of software maintenance on

software quality. In 2019 4th International Conference on

Internet of Things: Smart Innovation and Usages (IoT-SIU) (pp.

1-6). IEEE.

[10] Mubeen, S., Azam, F., & Rehman, M. (2019).

Investigating the impact of software maintenance on software

quality: a case study. In 2019 International Conference on

[11] Engineering and Emerging Technologies (ICEET) (pp. 1-

6). IEEE.

[12] Boehm, B. W., Brown, J. R., & Lipow, M. (1978).

Quantitative evaluation of software quality. In Proceedings of

the 2nd international conference on Software engineering (pp.

592-605). IEEE Computer Society Press.

[13] Lientz, B.P. and Swanson, E.B., "Problems in Application

Software Maintenance," Communications of the ACM, vol. 26,

no. 4, pp. 274-287, 1983.

[14] Yau, S. S., & Collofello, J. S. (1990). Some stability

measures for software maintenance. IEEE Transactions on

Software Engineering, 16(10), 1109-1124. doi:

10.1109/32.60334.

[14] Gupta, A., & Sharma, S. (2016). Software Maintenance:

Challenges and Issues. St. Xavier’s College, Jaipur - 302001,

India. Email: shretasharma@hotmail.com.

[15] Rathore, S., Gupta, S., & Bhatnagar, A. (2016). Software

Maintenance and Software Quality: A Review. International

Journal of Computer Applications, 135(5), pp. 1-5. Available at:

https://www.ijcaonline.org/archives/volume135/number5/2

4155-2016915967 (Accessed: 22 April 2023).

[16] Juergens, E. (2016) Software maintenance research that is

empirically valid and useful in practice, De Gruyter. De

Gruyter Oldenbourg. Available at:

https://www.degruyter.com/document/doi/10.1515/itit-

2016-0014/html (Accessed: April 25, 2023)

[17] www.journalcra.com. (n.d.). Software maintenance |

International Journal of Current Research. [online] Available at:

 https://www.journalcra.com/article/softwaremaintenance

[Accessed 25 Apr. 2023].

[18] Capilla, R., Dueñas, J.C. and Ferenc, R. (2011). A

retrospective view of software maintenance and reengineering

research - a selection of papers fromEuropean Conference on

Software Maintenance and Reengineering 2010. Journal of

Software: Evolution and Process, 25(6), pp.569–574.

doi:https://doi.org/10.1002/smr.548

[19] Stojanov, Z. (n.d.). Software maintenance improvement in

small software companies: Reflections on experiences. [online]

Available at: https://ceur-ws.org/Vol2913/paper14.pdf.

[20] Yusop, O.M. and Ibrahim, S. (2011). Software Maintenance

Testing Approaches to Support Test Case

Changes – A Review. Communications in Computer and

Information Science, pp.33–42.

doi:https://doi.org/10.1007/978-3-642-22027-2_4.

AUTHOR BIOGRAPHIES

Nalaka Samantha Lankasena is a

Senior Lecturer at the Department of

Information and Communication

Technology, Faculty of Technology,

University of Sri Jayewardenepura ·

VP Pamunuwa is a Software

Engineering undergraduate at the

Department of Computer Science,

Faculty of Computing, KDU.

DP Deraniyagala is a Software

Engineering undergraduate at the

Department of Computer Science,

Faculty of Computing, KDU.

RDAV Thennakoon is a Software

Engineering undergraduate at the

Department of Computer Science,

Faculty of Computing, KDU.

VTB Kulasekara1is a Software

Engineering undergraduate at the

Department of Computer Science,

Faculty of Computing, KDU.

