

9

Paper ID: 033

Real-Time Server Room Monitoring System Using Internet of Things (IoT)

Technology

1#Y Tishan, 2I Ashly
1Department of Computer Science & Software Engineering, NSBM

NSBM Green University

Mahenwaththa, Pitipana, Homagama, 10200, Sri Lanka.

2Department of Electrical, Electronics, and Computer Engineering, NSBM Green University

Mahenwaththa, Pitipana,Homagama, 10200, Sri Lanka.

#yasirutishan@hotmail.com

Abstract— With the exponential growth of server rooms and data

centres, ensuring their optimal functioning and protection has

become a critical concern. This research presents an IoT-based

server room monitoring system that utilizes microcontrollers and

sensors to continuously monitor key environmental metrics, such

as temperature, humidity, and power, while also detecting

potential hazards including vibration, fire, and smoke. The system

employs the NodeMCU microcontroller, which seamlessly

integrates various sensors including Smoke, Flame, AC Voltage,

Temperature and humidity, and Vibration sensors. A combination

of LED lights and a buzzer is employed to promptly alert users

when any monitored factor exceeds its predefined threshold. The

system offers user access through both a mobile and web

application, allowing for registration and convenient retrieval of

pertinent information. By providing real-time monitoring and

rapid notifications, this system enhances the reliability and

security of server rooms, enabling proactive maintenance and

timely resolution of potential issues. This research contributes to

the field of IoT-based server room monitoring, addressing the

growing need for efficient and robust monitoring solutions in the

face of increasing data demands.

Keywords— IoT, Server Room, Arduino, Monitoring System,

Environmental, Sync fusion Flutter, Google IoT Cloud.

I. INTRODUCTION

This research introduces an IoT-based Server Room
Monitoring System that utilizes microcontrollers and
sensors to enable real-time monitoring[1] of essential metrics
and timely detection of potential hazards. The system is
designed to efficiently operate and protect server rooms,
addressing the increasing demand for data storage and
processing. It also includes a user-friendly mobile
application interface for easy access and control.

The IoT-based Server Room Monitoring System is
designed to monitor key server metrics such as temperature,
humidity, and power consumption. Additionally, it
incorporates sensors to detect and alert users about potential
risks including vibration, fire, and smoke.[1] By employing
the ESP-32 microcontroller, the system enables seamless
connectivity and integration of multiple sensors,
simplifying the monitoring process. The sensors used in the
system include the Smoke Sensor, Flame Sensor, AC
Voltage Sensor, Temperature and Humidity Sensor, and
Vibration Sensor, which collectively gather data on
environmental conditions within the server room.

To ensure timely notifications and alerts, the system
utilizes both visual and auditory indicators. An LED Light
and a Buzzer are employed as output devices to promptly
inform users when any monitored factor exceeds[1] its
predefined threshold. This enables swift action to be taken
in response to critical events, reducing the risk of potential
damage to server equipment and data loss.

User interaction with the IoT-based Server Room
Monitoring[2] System is facilitated through a mobile
application. Users are required to register and access the
system through a web-based interface, which provides a
convenient means to retrieve real-time information and
control the monitoring process. By offering accessibility
through mobile devices, users[2] can stay connected and
informed about the server room's status regardless of their
physical location.

The importance of continuous monitoring and proactive
maintenance of server rooms cannot be overstated. Even
minor disruptions or failures in these environments can have
significant repercussions on business operations. By
implementing the IoT-based Server Room Monitoring
System, organizations[2][3] can mitigate risks, improve
reliability, and ensure the smooth operation of their server
infrastructure. This research contributes to the field by
presenting an effective and comprehensive solution for
server room monitoring, addressing the growing need for
robust monitoring systems in today's technology-driven
landscape.[3]

II. BACKGROUND

A. Problem Statement

The absence of adequate real-time monitoring
functionalities[4] presents notable obstacles in extant server
room monitoring systems, resulting in possible performance
impediments and an increased likelihood of equipment
malfunction or data loss. These systems fail to promptly
detect and alert users about critical hazards such as fire,
smoke, and excessive environmental conditions, leaving
server rooms susceptible to damage and disruption. In
addition, the restricted availability of access and deficient
user interface functionalities pose a significant obstacle to
efficient supervision and regulation, thereby obstructing
users' capacity to obtain crucial data and react promptly to
potential concerns.[5] Addressing these shortcomings is

Real-Time Server Room Monitoring System Using Internet of Things (IoT) Technology

10

essential to enhancing the reliability and security of server
rooms in the face of escalating data demands.

B. Proposed Solution

The proposed solution is to develop an IoT-based Server
Room Monitoring System that offers comprehensive and
real-time monitoring of server metrics and timely detection
of potential hazards.[5] The system will provide a user-
friendly interface accessible through both mobile and web
applications, ensuring convenient access, data retrieval, and
control for users. [5][6]

The key components and features of the solution include:

• IoT-Based Architecture: The proposed solution
utilizes an IoT-based architecture, integrating
microcontrollers and sensors for data collection on
critical server metrics.

• Sensor Integration: Various sensors, including
Smoke, Flame, AC Voltage, Temperature and
humidity, and Vibration sensors, are integrated
into the system to enable comprehensive
monitoring of environmental conditions and
hazard detection within the server room.

• Real-Time Monitoring: The system offers real-
time monitoring of server metrics, ensuring
prompt detection of fluctuations or abnormalities.
Users can access and monitor the server room's
status in real-time through mobile and web
applications.

• Hazard Detection and Alert System: An intelligent
hazard detection system analyzes sensor data in
real-time, triggering immediate alerts through
LED lights and a buzzer when fire, smoke, or
excessive environmental conditions are detected.
This enables users to quickly address issues and
prevent further damage.

• User-Friendly Interface: The mobile and web
applications provide a user-friendly interface for
easy registration, data retrieval, and control of the
monitoring system. Users can set threshold limits,
receive notifications, and access historical data for
analysis and troubleshooting purposes.

• Remote Accessibility: The solution allows users to
remotely access the server room monitoring
system through mobile and web applications,
ensuring monitoring and alert reception even when
users are not physically present.

• Data Logging and Analysis: The system includes a
data logging feature that captures and stores
historical data. This enables trend analysis,
anomaly detection,[7] and long-term performance
monitoring, providing insights into server room
conditions and facilitating the identification of
potential issues.[8]

III. OBJECTIVES

1. Real-Time Temperature and Humidity

Monitoring: Develop a system that can
continuously monitor and display the current
temperature and humidity levels in the server
room. The system will use appropriate sensors to
gather accurate and reliable data, allowing users to
have instant access to the environmental
conditions within the server room.

2. Historical Data Analysis: Implement a data
logging feature to capture and record temperature
and humidity measurements periodically. This
data will be stored for subsequent analysis and
graphing, providing insights into long-term trends
and patterns. The system will enable users to view
graphical representations of temperature and
humidity variations over time,[9] facilitating
informed decision-making and proactive
maintenance.

3. Smoke Detection: Integrate a smoke detection
mechanism into the system to identify the presence
of smoke or potential fire hazards within the server
room. The system will employ sensors specifically
designed to detect smoke particles,[10] triggering
immediate alerts to notify users of any potential
dangers and allowing for swift response measures
to prevent damage to server equipment and critical
data.

4. Power Fluctuation Monitoring: Implement
functionality to monitor power fluctuations within
the server room. By utilizing appropriate sensors,
the system will detect variations in the power
supply and promptly notify users in the event of
irregularities. This feature will enable proactive
measures to prevent power-related issues and
ensure the stable and uninterrupted operation of the
server room.

5. Data Utilization for Analysis and Graphing:
Develop mechanisms to store and organize the
collected data in a structured manner, facilitating
subsequent analysis and graphing.[9][10] The system
will allow users to access historical data, enabling
them to identify patterns, anomalies, and
correlations. Graphical representations of
measurements will aid in visualizing trends and
identifying potential issues, leading to informed
decision-making and proactive maintenance
strategies.

IV. SYSTEM ARCHITECTURE

Figure 1 - System Architecture Diagram

Real-Time Server Room Monitoring System Using Internet of Things (IoT) Technology

11

This Server Room Monitoring System employs a
combination of input and output devices to facilitate its
functionality. The input devices utilized in the system
include sensors such as the MQ2 Smoke Sensor, Fire
Sensor, Vibration Sensor, AC Voltage Sensor, and DHT22
Sensor, which are responsible for gathering data. These
sensors are connected to the ESP-32 NodeMCU through the
Arduino Code. The collected data from the NodeMCU is
then transmitted to the Google IoT Cloud via a Wi-Fi
connection. Additionally, the data is stored in the Firebase
database, facilitating data exchange between the server and
Firebase.

To access the data, users can utilize either a PC or a
mobile phone. The data can be accessed through a web
application when connected to a PC, or through a mobile
application when using a mobile phone. In both cases, the
data needs to be hosted on the server. Furthermore, the
system includes output devices, namely the Buzzer and
LED Light. These devices are connected to the system via
the NodeMCU and provide visual and audible alerts. The
LED lights are designed with three colours, namely Red (R),
Green (G), and Blue (B), to indicate different status
conditions.

A. PCB Architecture

The hardware development for this system followed the
PCB architecture, and the PCB diagram was designed using
the Fritzing software. The design incorporates all the
necessary components, including the sensors and the
NodeMCU. The connection between these sensors and the
NodeMCU is clearly outlined in the Arduino code.

Here is the pin configuration for the sensor connections:

▪ The DHT22 sensor's digital pin is connected to

D13 of the NodeMCU.
▪ The MQ2 Smoke sensor's pin is connected to D12.
▪ The digital output of the Vibration sensor is

connected to D27.
▪ The Fire sensor is connected to D26.

▪ The Buzzer, serving as an output device, is
connected to D25.

▪ The Green LED light, indicating system operation,
is connected to D2.

▪ The Red LED light, used for alerts, is connected to
D4.

▪ The voltage sensor's input pin is connected to D35
of the NodeMCU.

▪ A DC Jack is connected to the battery charger,
along with an LED light that functions while
charging.

To ensure continuous operation during power failures, a
battery is incorporated into the system. The battery is
connected to the battery charger, where the charger's output
(OT) is connected to the IN pin of the Booster Module. The
Booster Module then provides a stable 5V output, which is
connected to the NodeMCU’s Vin pin. However, the
NodeMCU operates on 3.3V, so the 5V output is reduced
accordingly. Each sensor receives the required 3.3V output
from the NodeMCU. For both DC and AC power supply, a
two-core wire is directly plugged into the system. A booster
module is employed to maintain a stable current and provide
the necessary 5V. The LED light used for the battery charger
has a red and blue colour.

V. DEVELOPMENT METHODOLOGY

The development methodology used for this project was

the waterfall methodology. In the waterfall methodology,

the project progresses sequentially through distinct phases,

with each phase building upon the previous one. The phases

typically include requirements gathering, system design,

implementation, testing, and deployment.[9] It's important

to note that the waterfall methodology follows a linear

approach, where each phase is completed before moving on

to the next. This methodology works well for projects with

well-defined requirements and stable environments, as

changes or modifications to the hardware system are

typically challenging to implement once the development

progresses beyond a certain point.

A. Hardware Development

Figure 2 - PCB Architecture Diagram

Figure 3 - Internal View

Real-Time Server Room Monitoring System Using Internet of Things (IoT) Technology

12

1. Identify the required sensors and components:

Determine the specific sensors and hardware

components needed for monitoring the server room,

such as smoke sensors, temperature sensors,

vibration sensors, etc.

2. Select the microcontroller: Choose a suitable

microcontroller board, such as ESP-32 NodeMCU,

which can handle the data processing and

communication tasks required for the system.

3. Design the circuit: Create a circuit diagram that

illustrates the connections between the

microcontroller, sensors, and other components.

Ensure proper power supply and data

communication interfaces.

4. Prototype assembly: Assemble the hardware

components on a breadboard or a dot board,

following the circuit diagram. Use jumper wires and

appropriate connectors to establish the necessary

connections.

5. Testing and debugging: Verify the functionality of

each component and the overall system. Test the

sensors to ensure they are providing accurate

readings. Debug any issues or errors that arise during

testing.

6. Enclosure design: Design or select a suitable plastic

enclosure box to house the hardware components

securely. Consider factors such as ventilation,

accessibility, and protection from external elements.

7. Final assembly: Transfer the prototype hardware to

the chosen enclosure. Ensure proper positioning and

alignment of the components. Securely mount the

microcontroller, sensors, and other hardware

elements inside the enclosure.

8. Power supply setup: Integrate the power supply

components, such as the 18650 battery, battery

charger (e.g., TP4056), and DC jack for external

power adapter connection. Verify that the power

supply setup is reliable and safe.

9. Documentation: Create documentation that includes

the circuit diagram, component list, assembly

instructions, and any other relevant details. This

documentation will be helpful for future reference

and troubleshooting.

10. Quality assurance: Conduct thorough testing and

validation of the assembled hardware system.

Ensure it meets the required specifications,

functionality, and performance criteria.

11. Deployment: Install the assembled hardware system

in the server room, considering factors such as

optimal sensor placement and secure mounting.

Connect the system to the required network or

communication infrastructure.

12. Maintenance and monitoring: Regularly monitor the

hardware system for any issues or malfunctions.

Perform maintenance tasks such as sensor

calibration, battery replacement, or firmware

updates as needed to ensure the system's continuous

operation.

B. System Requirements

Table 1 - Hardware Requirement

Used Hardware Requirements

ESP-32 NodeMCU
Microcontroller board for data processing

and communication with the network.

MQ-2 Smoke Sensor
To detect the presence of smoke or

combustible gases in the server room.

ZMPT101B Sensor
For measuring the AC voltage in the

server room.

DHT22 Sensor
To monitor the temperature and humidity

levels in the server room.

IR Flame Detector

Module

To detect the presence of flames or fire in

the server room.

SW-420 Vibration

Sensor

To detect any vibration or movement in

the server room.

Mini Buzzer
To generate audible alerts or alarms when

specific events occur.

3200mah 3.7V 18650

Battery
To provide power supply to the system.

MT3608 Mini DC-DC

Step-Up/Boost Module

To regulate and boost the voltage for

specific components.

TP4056 Lithium

Battery Charger
For charging the 18650 battery.

Dot Board
For connecting and soldering the

electronic components.

Switch
To manually control the system or certain

functionalities.

LED Light
To indicate the system status or specific

events.

DC Jack
To connect the DC power adapter for the

external power supply.

Jumper Wire
For making electrical connections

between the components.

Plastic Enclosure Box
To house and protect the hardware

components.

DC Power Adapter
To provide external power supply to the

system when needed.

Real-Time Server Room Monitoring System Using Internet of Things (IoT) Technology

13

Table 2 - Software Development Requirements

Technologies

Requirements

Platform IDE
Programming

Language

IoT Development Arduino IDE C++

Mobile Application
Visual Studio

Code

Framework – Flutter

Programming – Dart Web Application

Database Firebase

Cloud Platform Google IoT Platform

Testing
Manual testing in hardware development.

Usability testing.

Version Control GitHub

Data Visualization Syncfusion Flutter Charts

Notifications Alert ESP32_MailClient.h

C. Software Development

1) Arduino Programming

In this system, a mobile application and a web

application have been developed alongside an Arduino-

based IoT project. The Arduino code is created using the

Arduino IDE, starting with the inclusion of necessary

libraries and expanding the code from there. The operations

of all the sensors used in the project are implemented within

this code. The system's functionality is executed from the

void loop() function. Each specific measurement is treated

as an instance variable, and a corresponding function is

created for it. To ensure efficient code organization, these

functions are called from within the void loop() function.

Let's take vibration measurement as an example.

To measure vibration, the following code is used inside

the void loop() function: long measurement =

vibration(). Within the vibration() function, the actual

measurement is performed using long measurement =

pulseIn(vs, HIGH). This function utilizes the pulseIn

function to detect the vibration state. Here, vs represents the

pin used for vibration detection. By using pulseIn, the

length of the pulse in both high and low states can be

determined, as a long value is used to store the result.

The function for fire detection can be represented as

follows: bool measurementF = fire(). This function

utilizes the digitalRead function to determine whether a

fire has occurred. The value of measurementF is not

indicative of the fire itself, but rather whether a fire has

been detected or not. Since a boolean value can only be

either 1 or 0, it provides a binary representation of the fire

status.

For the smoke sensor, the analogRead function is used.

A threshold value is set to determine whether smoke has

been detected. The voltage range accepted by the system

lies between 195 and 264, and a corresponding function has

been provided to check if the measured voltage falls within

this acceptable range.

The system employs diverse sensors and sends email

notifications upon detection of alarms or alerts, utilizing the

FirebaseESP32 library for data storage and retrieval from

the Firebase Realtime Database, alongside the

ESP32_MailClient.h library for the purpose of email

transmission.

1) Third-Party Components and Libraries

DHT and EmonLib are the two main libraries used in

this project. The DHT library is primarily used to measure

temperature and relative humidity. In the Arduino IDE, the

code begins by including the DHT library and defining the

pin connected to the DHT sensor. The sensor type, in this

case, is DHT22. The DHT object is then initialized with the

previously defined pin and type. The serial monitor is

started at a baud rate of 9600 in the setup() function for

debugging purposes.

The DHT sensor is initialized with the begin() function,

which requires a delay for the sensor to provide

accurate readings. In this case, the delay for the DHT22

sensor is set to two seconds in the loop(). The temperature

and humidity readings are obtained using the

readHumidity() and readTemperature() methods,

respectively. These values are stored as floats.

To obtain the temperature value in Fahrenheit, the code

can use the formula float f = dht.readTemperature(true).

The DHT library provides functions for temperature

calculations in both Fahrenheit and Celsius. Finally, all the

readings are displayed on the serial monitor.

Another library used in this project is EmonLib, which

is used for energy measurement, specifically for voltage.

As DC voltage is not measured in this server room, the

EmonLib library is chosen for its reliability. The voltage

value is given as Vrms in the EmonLib.

Additionally, the code includes a heat index library to

calculate the heat index, which provides an indication of

Figure 4 - Email Notification

Real-Time Server Room Monitoring System Using Internet of Things (IoT) Technology

14

comfort in the environment. The heat index calculation

considers humidity and temperature along with the system's

measurements.

2) Application Development

The mobile application and web application were

developed using the Flutter framework and the Dart

programming language. Graphical charts were displayed

using the syncfusion_flutter package, and gauges were

imported from the syncfusion_flutter_gauges package.

These libraries and packages provide developers with the

necessary tools and components to create interactive and

visually appealing charts and gauges in the applications.[11]

The Flutter framework, along with Dart, allows for cross-

platform development, enabling the applications to run

seamlessly on both mobile and web platforms.

VI. SYSTEM TESTING

The IoT-Based Server Monitoring System was

subjected to two forms of testing: usability testing and

manual testing.[11] User experience testing can be

considered a subset of usability testing, aimed at evaluating

the software application's ease of use and user-friendliness.

Targeted usability testing was conducted, considering

factors such as user-friendliness, control handling

flexibility, and the application's ability to fulfil its

objectives. Both a mobile application and a web application

were developed for the system, and further testing was

conducted to assess their responsiveness and load time.

Figure 6 - System Testing

Manual testing, an essential aspect of the overall testing

process, involves human testers executing test cases

manually. This approach ensured the software's quality,

functionality, and usability by comparing observed results

with expected behaviour.

To simulate sensor data, a Python script was utilized for

testing purposes, generating random numbers and

timestamps. By effectively sending this generated data to a

Firebase Realtime Database, the script provided a testing

framework for simulating an IoT-based server room

monitoring system, mimicking its operations in real-world

conditions.

Figure 7 - Inside the Server Box

VII. RESULT AND DISCUSSION

In this sample dataset, we have a get object that includes
general information such as humidity (hum), email address
(mail), smoke level (smoke), temperature (tem), high
voltage (volH), and low voltage (volL).

 The sensor_1_data object contains data from sensor 1,
including two entries with unique identifiers (ID_1 and
ID_2). Each entry includes information about the alarm
status (alarm), fire detection (fire), humidity (humidity),

Figure 5 - Mobile Application Development

Figure 8 - Firebase Data Output

Real-Time Server Room Monitoring System Using Internet of Things (IoT) Technology

15

smoke detection (smoke), temperature (temperature),
timestamp (timeStamp), vibration level (vibration), and
voltage level (voltage).

The provided dataset is from an IoT-based server room
monitoring system. It includes information about various
parameters measured in the server room at different time
intervals. The dataset contains the following columns:

Table 3 - Data Set

Each row represents a specific measurement recorded at
a particular time. The dataset captures the changes in
humidity, temperature, and voltage over time, providing
insights into the environmental conditions of the server
room.

Humidity and Temperature: Throughout the dataset,
the humidity remains relatively constant at around 97% to
99% with occasional variations, while the temperature
remains constant at around 30.2°C to 32.8°C with minor
fluctuations. This suggests a stable environment with
consistent humidity and temperature levels.

Chart 2 – Voltage Analysis with Time

Voltage: The voltage measurements vary throughout
the dataset, ranging from approximately 206.97V to
268.58V. There are some instances where the voltage
deviates significantly from the average, indicating potential
fluctuations in the power supply or electrical system.

A. Recommendation

Based on the analysis of the dataset, I would recommend
taking the following actions:

Monitor Voltage Fluctuations: Due to the significant
variations in voltage measurements, it is advisable to closely
monitor the electrical system. Any abnormal or inconsistent
voltage readings should be investigated promptly to identify
potential issues and prevent damage to equipment.

Verify Humidity and Temperature Sensors: Since the
humidity and temperature readings remain relatively
constant throughout the dataset, it is recommended to
verify the accuracy and calibration of the sensors
periodically.[12] This will help ensure the reliability of the
collected data and the effectiveness of any environmental
control systems.

For instance, it is recommended[12] to maintain the server
room temperature within the range of 20°C to 22°C. If there
are any fluctuations or deviations from this optimal
temperature range,[13] it should be promptly notified and
addressed. Monitoring the environmental temperature
closely helps prevent potential issues and ensures the
stability of the server room's operating conditions.

VIII. CONCLUSION

In conclusion, the project has effectively fulfilled its
objectives by successfully developing a fully functional
Internet of Things (IoT)[15][16] device that presents
considerable value within the industry. The project was
completed within the designated time frame, demonstrating

sensor_1_data Description Value

ID
The unique identifier
for each entry in the
sensor data.

NVdGHjAym3GF_tsvA-

Fire

Indicates if a fire has
been detected in the
server room
(true/false).

false

Humidity

The humidity level in
the server room.
(Typically expressed
as a percentage.)

97.2

Smoke

Indicates if smoke has
been detected in the
server room
(true/false).

false

Temperature

The temperature in the
server room, usually
measured in degrees
Celsius

30.2

TimeStamp
The time when the data
was recorded.

1684319570

Chart 1 – Humidity and Temperature Analysis

0.00

20.00

40.00

60.00

80.00

100.00

120.00

10
:3

2:
50

 A
M

10
:3

3:
34

 A
M

10
:3

4:
03

 A
M

10
:3

4:
55

 A
M

10
:3

5:
36

 A
M

10
:3

6:
07

 A
M

10
:3

9:
18

 A
M

10
:3

9:
51

 A
M

10
:4

0:
33

 A
M

10
:4

1:
02

 A
M

10
:4

1:
33

 A
M

10
:4

2:
11

 A
M

10
:4

2:
49

 A
M

10
:4

3:
25

 A
M

10
:4

4:
25

 A
M

10
:4

5:
05

 A
M

10
:4

5:
53

 A
M

10
:4

6:
50

 A
M

10
:4

7:
30

 A
M

10
:4

8:
28

 A
M

1:
03

:2
3

P
M

1:
04

:1
3

P
M

1:
04

:5
1

P
M

1:
05

:5
5

P
M

6:
53

:5
5

A
M

A
v
er

ag
e

V
al

u
e

Time

Humidity & Temperature Analysis

Average of Humidity

Average of Temperature

0

50

100

150

200

250

300

1

13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

V
o

lt
ag

e
V

al
u
e

ID Number

Voltage Time Graph

Voltage

Real-Time Server Room Monitoring System Using Internet of Things (IoT) Technology

16

proficient project management and execution. An
outstanding accomplishment of this work lies in the creation
of a user-friendly web application and mobile application,
which provide a convenient and intuitive interface for users
to monitor and control the various functionalities of the IoT
device. The integration of the Flutter framework with the
Dart programming language, coupled with the utilization of
graphical charts and gauges from the Syncfusion package,
has significantly contributed to the development of visually
appealing and interactive user interfaces.

By employing a range of sensors, including the MQ-2
Smoke Sensor, ZMPT101B Sensor, DHT22 Sensor, IR
Flame Detector Module, and SW-420 Vibration Sensor, and
incorporating additional components[14] such as the Mini
Buzzer, the IoT device offers comprehensive monitoring
capabilities for server rooms. The ESP-32 NodeMCU
serves as the central microcontroller, facilitating data
collection, processing, and communication functionalities.

Furthermore, the hardware development phase was
meticulously executed, ensuring the selection of appropriate
components, correct wiring, and efficient power
management. The incorporation of a 3200mAh 3.7V 18650
Battery, MT3608 Mini DC-DC Step-Up/Boost Module, and
TP4056 Lithium Battery Charger guarantee reliable and
uninterrupted operation of the IoT device.

 A notable feature of the system is its ability to
periodically record data, allowing for the accumulation of
valuable measurements over time. This recorded data can be
utilized for subsequent analysis and graphing, enabling
stakeholders to gain insights into the environmental
conditions of the server room and make informed decisions
based on the derived findings.

IX. REFERENCES

[1]. maheshyadav216 (2022) IoT Based Server Room
Monitoring System, Hackster.io. Available at:
https://www.hackster.io/maheshyadav2162/iot-based-
server-room-monitoring-system-1ec820

[2]. Vidushi (2021) IoT based server room monitoring
system - PsiBorg, PsiBorg. Available at:
https://psiborg.in/iot-based-server-room-monitoring-
system/.

[3]. Julia Borgin (2022) Common server issues and their
effects on operations | TechTarget, Data Center.
Available at:
https://www.techtarget.com/searchdatacenter/tip/5-
common-server-issues-and-their-effects-on-operations

[4]. Botta, A., de Donato, W., Persico, V., & Pescapé, A.
(2016). Integration of cloud computing and internet of
things: a survey. Future Generation Computer Systems,
56, 684-700. Available at:
https://www.journals.elsevier.com/future-generation-
computer-systems [Accessed 17 May 2023].

[5]. Hassan, Q. F. (2018). Internet of Things: Challenges,
advances, and applications. CRC Press. Available at:
https://www.crcpress.com/Internet-of-Things-

Challenges-Advances-and-
Applications/Hassan/p/book/9781498785869
[Accessed 18 May 2023].

[6]. Johnson, P. (2019). An Introduction to the Internet of
Things (IoT). Liaison Technologies. Available at:
https://www.liaison.com/blog/2019/11/14/introduction-
internet-of-things/ [Accessed 19 May 2023].

[7]. Smith, M. (2020). IoT for Beginners: A Complete
Guide. Medium. Available at:
https://medium.com/iotforall/iot-for-beginners-a-
complete-guide-3c0b36fbb6aa [Accessed 20 May
2023].

[8]. DHT11/DHT22 Sensor with Arduino | Random Nerd
Tutorials (2019) Random Nerd Tutorials. Available at:
https://randomnerdtutorials.com/complete-guide-for-
dht11dht22-humidity-and-temperature-sensor-with-
arduino/.

[9]. Joharji, G., 2016. Linkedin. [Online]
Available at: https://www.linkedin.com/pulse/common-
problems-server-rooms-ghareed-
joharji/?articleId=6215116366253424640

[10]. Latif, M. U. M., Hossain, M. M., & Ali, M. A. (2019).
Design and implementation of an IoT-based server room
temperature monitoring system. In 2019 2nd
International Conference on Advances in Science,
Engineering and Robotics Technology (ICASERT) (pp.
23-26). IEEE.
https://doi.org/10.1109/ICASERT.2019.8889227

[11]. Ullah, R., Khan, M. A., Khan, A. U. R., & Ali, I. (2020).
IoT-based server room environment monitoring and
alert system. In 2020 4th International Conference on
Intelligent Computing and Control Systems (ICICCS)
(pp. 727-731). IEEE.
https://doi.org/10.1109/ICICCS48112.2020.9122479

[12]. Bélanger, F. and Carter, L., 2008. Trust and risk in e-
government adoption. The Journal of Strategic
Information Systems, 17(2), pp.165-176. Available at:
https://www.sciencedirect.com/science/article/pii/S096
3868708000217

[13]. Alvan Prastoyo Utomo, M. et al. (2019) ‘Server Room
Temperature & Humidity Monitoring Based on Internet
of Thing (IoT)’, in Journal of Physics: Conference
Series. Institute of Physics Publishing. Available at:
https://doi.org/10.1088/1742-6596/1306/1/012030.

[14]. Abouzeid, A., Rashed, A., El-Kassas, S., & El-Sayed, H.
(2019). IoT-based smart server room monitoring and
control system. In 2019 IEEE International Conference
on Mechatronics and Automation (ICMA) (pp. 1207-
1212). IEEE.
https://doi.org/10.1109/ICMA.2019.8816745

[15]. Chen, S., Zhang, H., Shang, Q., & Hu, Z. (2020). IoT-
based server room monitoring and control system for
energy efficiency. In 2020 2nd International Conference
on Frontiers of Artificial Intelligence and Statistics (pp.
54-59). ACM.
https://doi.org/10.1145/3417316.3417331

[16]. Alzahrani, M., Alamri, A., Alsalih, W., & Alshahrani,
M. (2018). IoT-based smart temperature monitoring
system for server rooms. In 2018 IEEE International
Conference on Communication and Signal Processing
(ICCSP) (pp. 721-725). IEEE.
https://doi.org/10.1109/ICCSP.2018.8460098

