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Abstract— Soil erosion is a significant environmental 

concern that can have adverse effects on agricultural 

productivity and natural resource sustainability. This 

research focuses on assessing soil erosion in the Kalu 

River catchment of Sri Lanka using the Revised Universal 

Soil Loss Equation (RUSLE) and Artificial Neural 

Network (ANN) models. The study aims to quantify yearly 

soil loss between 2000 and 2020 and identify the spatial 

pattern of soil erosion risk. The results of the study 

indicate that the K factor, LS factor, P factor, C factor, 

and R factor have varying levels of influence on soil 

erosion. An ANN model is used to accurately predict soil 

erosion, but the RUSLE model is found to be more 

effective in evaluating soil erosion susceptibility in the 

specific study area. The research also examines the 

variation in soil erosion among sub-catchments within the 

Kalu River catchment. Sub-catchment A10 exhibits the 

highest soil erosion value, while A4 has the lowest. The 

Landslide Frequency Ratio (LFR) is employed to establish 

a correlation between soil erosion hazard classes and 

landslide frequency. High-priority areas for soil 

conservation measures are identified based on LFR values, 

soil erosion rates, and land-use change. The findings 

underscore the importance of estimating soil erosion rates, 

creating soil erosion hazard zonation maps, and 

prioritizing areas for soil conservation practices and 

sustainable land management. Policymakers, land-use 

planners, and farmers can utilize this research to make 

informed decisions and promote sustainable land-use 

practices. The study contributes to the understanding of 

soil erosion factors and provides valuable insights for 

future research in other regions. 

 

Keywords— ANN Model, Landslide Frequency Ratio, 
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I. INTRODUCTION 

Soil erosion is a natural process that involves the 

removal and transportation of soil material, particularly 

water erosion. Water erosion can manifest in various 

forms, such as splash, sheet, rill, gully, or ravine 

erosion(Senanayake et al., 2020). Gully erosion, in 

particular, refers to the accumulation of surface runoff in 

small channels, resulting in the removal of soil from deep 

layers(Rahmati et al., 2016). The repercussions of soil 

erosion are detrimental to the sustainability of ecosystems 

and the long-term quality of productive landscapes. 

Consequently, there is a need for rapid assessment 

methods to select appropriate conservation measures and 

monitor their effectiveness(Somasiri, Hewawasam and 

Rambukkange, 2022). The consequences of soil erosion 

are detrimental to ecosystem sustainability and the long-

term quality of productive landscapes. Rapid assessment 

methods are needed to select appropriate conservation 

measures and monitor their effectiveness. Field-based 

quantification techniques are employed to estimate soil 

erosion rates in the short term. 

 

The Universal Soil Loss Equation (USLE), Modified 

Universal Soil Loss Equation (MUSLE), and Revised 

Universal Soil Loss Equation (RUSLE) are widely used 

prediction methods for erosion prediction and 

control(Panditharathne et al., 2019; Somasiri, 

Hewawasam and Rambukkange, 2022). The U.S. 

Department of Agriculture's RUSLE decision support 

system is particularly employed in land use planning and 

soil conservation efforts. 

 

Artificial Neural Network (ANN) models have become 

popular for predicting soil erosion due to their ability to 

handle complex, non-linear relationships(Gholami et al., 

2018). When integrated with Geographic Information 

Systems (GIS) data, ANN models improve prediction 

accuracy by considering spatial variability. Combining 

ANN with traditional methods like RUSLE offers a 

flexible and data-driven approach to soil erosion 

prediction, benefiting soil conservation and land use 

planning efforts, and enabling better management of 

erosion-prone areas. 

 

This study combines the RUSLE Equation model and 

Artificial Neural Network (ANN) model with GIS to 

determine the impact of land use and land cover (LULC) 

conversion on the average annual soil loss in the Kalu 

watershed. Factors such as rainfall, runoff, soil erodibility, 

slope gradient and length, as well as crop and vegetation 
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cover contribute to the magnitude and rate of soil erosion. 

Tillage practices, such as minimum till or no-till 

techniques, can minimize water erosion. 

 

Monitoring and predicting soil erosion require the 

utilization of remote sensing and GIS technologies. 

However, accurate modeling is challenging due to the 

complex nature of erosion processes and the non-linear 

behavior of erosion models. Satellite images and digital 

elevation models are valuable tools for identifying areas 

with potential erosion risks(Fayas et al., 2019; 

Senanayake et al., 2020). Remote sensing data aids in 

identifying erosion zones and locations of sediment 

accumulation, enabling prompt documentation of erosion 

presence and severity, as well as predictions of their 

impact on topography, soils, agricultural lands, and 

landscape systems(Panditharathne et al., 2019; Somasiri, 

Hewawasam and Rambukkange, 2022). 

 

In Sri Lanka's agricultural development, soil erosion poses 

a significant challenge. This research aims to address 

inquiries concerning the benefits of monitoring soil 

erosion, suitable GIS and remote sensing methodologies, 

and the relationship between land-use change and 

landslide incidents. The primary objective of this study is 

to propose a methodology for assessing the vulnerability 

of soil erosion by integrating three approaches: evaluation 

of land-use changes, assessment of soil erosion severity, 

and the landslide frequency ratio method. 

 

II. METHODOLOGY 

A. Study area 

The Kalu Ganga is a river in Sri Lanka, runs between 

6.42° and 6.83°N and 80.00° to 80.67°E, and empties into 

the sea at Kalutara. Its primary water sources are 

mountainous forests in the Central Province and the 

Sinharaja Forest Reserve. The Kalu Ganga basin has a 

surface area of 2766 km2 and is the second-largest river 

basin in Sri Lanka, with an average annual rainfall of 

4000 mm and an annual flow of 4000 m3 million. Figure 1 

illustrates a map of the region. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1. Geographical location and DEM of Kalu river basin 
 

 

 

B. Image preprocessing 

Google Earth Engine (GEE) was used to process Landsat 

imagery from 2000, 2005, 2010, 2015, and 2020. An 

object-based algorithm called Fmask was employed to 

select the best cloud-free pixel. Data normalization was 

performed to reduce noise and classification 

errors(Kouassi et al., 2023). The USGS digital elevation 

model was used to differentiate elevation data in a 

watershed. 

 

C. Land use land cover change 

The process of analyzing satellite images to determine 

land use and land cover (LULC) is complex and multi-

step, with two main types of image analysis algorithms: 

pixel-based image classifiers and object-based image 

classifiers. A mixed method was used to create false-color 

composites to identify different land cover types and 

classify the land into homogeneous groups. Five different 

land-use classes were defined based on prior knowledge 

and the LUPPD map of Sri Lanka. This study used a 

mixed method to classify the images and define five land-

use classes using Google Earth Engine(Kouassi et al., 

2023). To ensure accuracy, an accuracy assessment was 

performed using 150 ground control points for each 

image. Google Maps and land-use maps were used to 

validate and verify the land-use classes generated from the 

Landsat satellite image dataset(Tian et al., 2021; Kouassi 

et al., 2023). 

 

D. Factor generation 

This study incorporated various factors, namely crop 

management (C-factor), soil erodibility (K-factor), slope 

length and steepness (LS-factor), conservation practices 

(P-factor), and rainfall erosivity (R-factor)(Al Rammahi 

and Khassaf, 2018; Saha et al., 2019; Moisa et al., 2021; 

Somasiri, Hewawasam and Rambukkange, 2022). 

 

According to that, C-factor was determined from remote 

sensing information using the Normalized Difference 

Vegetation Index (NDVI) and Van der Knijff and 

colleagues (1999)'s CVK approach. Colman's (2018) 

approach was used to calculate the C-factor, which 

measures soil erosion potential. NDVI data was obtained 

using Landsat 7 (ETM+), Landsat 8 (OLI), and Landsat 5 

(TM) surface reflectance imagery. A temporal analysis 

was conducted to investigate changes in the C-factor over 

time(Almagro et al., 2019). 

 

The K factor is a measure of how easily soil can be eroded 

by rainfall and runoff. It depends on soil properties like 

particle size, organic matter content, structure, and 

permeability. Researchers have developed equations to 

estimate the K factor, which is used in the RUSLE model 

to calculate soil erosion. Those equations are applied to 

soil data to determine the K factor values for a specific 

area(Pringle et al., 2013; Mammadli and Gojamanov, 

2021). 

 

The slope length-gradient factor (LS factor) is a tool used 

to model soil erosion in hillslopes. To derive accurate LS 

factors for larger and more complex sites, a combined tool 
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of Geographic Information Systems (GIS) and Remote 

Sensing (RS) can be utilized. Five methods were 

employed to determine the most effective approach for 

deriving the LS factor(Somasiri, Hewawasam and 

Rambukkange, 2022). A depressionless SRTM Digital 

Elevation Model (DEM) with a 30 m cell size was 

obtained from the USGS EarthExplorer website. Flow 

directions were generated to calculate the slope length 

factor (L) for the model. LS values were assigned to each 

30-m cell of the grid surface of each catchment by 

multiplying L and S factors in the raster calculator of the 

ArcGIS environment. 

 

The P-factor is a conservation practice that measures soil 

loss due to tillage practices. It ranges from 0 to 1, with 

higher values indicating a lack of conservation practices in 

steep areas and lower values indicating effective 

conservation in built-up and plantation areas. P-factor 

values were sourced from previous studies and assigned to 

different slope classes in a raster dataset created from a 

slope map derived from a digital elevation model(Tian et 

al., 2021). 

 

The Rainfall Erosivity (R-factor) measures the impact of 

rainfall on soil erosion. Eight rain-gauge stations were 

collected over a 20-year period and the mean annual 

precipitation was found in the Supplementary Material. 

The equation was used to calculate the R-factor, which 

was then converted to a raster surface using interpolation 

techniques(Senanayake et al., 2020; Somasiri, 

Hewawasam and Rambukkange, 2022). 

 

E. Multiple linear regression analysis 

The research study used Multiple Linear Regression 

(MLR) to model the relationship between a dependent 

variable and two or more independent variables. The 

regression coefficients and weights for each predictor 

variable were displayed by the model code of MLR. A 

CSV dataset was loaded into the R programming language 

and a multiple regression model was fitted to the data. The 

regression coefficients and weights were extracted and 

stored in a variable named "coefficients". The model was 

summarized and a scatter plot was created to visualize the 

relationship between each factor and soil erosion. 

 

F. Soil erosion assessment 

This study compared two soil erosion models: the RUSLE 

model and an Artificial Neural Network (ANN) model. 

The RUSLE model used the factors of rainfall erosivity 

(R), soil erodibility (K), slope length and steepness (LS), 

crop management (C), and land management (P) to assess 

average annual soil loss rates. The model employed geo-

informatics techniques and spatial data to classify and 

map soil erosion hazards. The ANN model aimed to 

predict soil erosion by analyzing the same variables. The 

analysis involved data exploration, normalization, 

splitting into training/testing/validation sets, building the 

ANN model, and evaluating its performance using metrics 

like RMSE, MSE, and R-squared(Gholami et al., 2018). 

 

 

 

G. Frequency ratio calculation 

A landslide inventory map was created using GIS, 

incorporating data on 104 landslide incidents between 

2000 and 2020. The severity of damages was considered. 

The purpose of this study was to assess the relationship 

between landslide incidents and soil erosion. The 

frequency ratio model was used to compute the landslide 

frequency ratio (LFR) for each land-use class and soil 

erosion hazard class. The average value of the landslide 

frequency ratio was found to be 1 for the occurrence of 

landslide incidents in a particular area. Landscape 

vulnerability was assessed and ranked based on the 

frequency ratio, soil erosion rates, and land-use change for 

soil conservation(Senanayake et al., 2020). The LFR was 

computed using the number of landslide incidents in each 

RDZ, and the soil erosion hazard classes and land-use 

change together with LFR were used to rank the RDZs. 

 

Figure 2 depicts the overall comprehensive methodology 

that was employed to achieve the research objectives. 

 

Figure 2. Methodology of the study 

 

III. RESULTS AND DISCUSSION 

A. Land use land cover change 

A land-use analysis was conducted, classifying the land 

into five categories: water bodies, forest, agriculture, 

urban areas, and barren land. Processed maps for the years 

2000, 2005, 2010, 2015, and 2020 were analyzed. The 

findings showed that agriculture areas, forest, and urban 

areas in the Kalu River basin increased by 7.88%, 2.13%, 

and 2.61% respectively from 2000 to 2020. In contrast, 

barren land decreased by 11.42% and 6.46% during the 

same period. These changes can be attributed to 

anthropogenic activities such as agricultural expansion, 
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urban development, deforestation, and abandoned 

agricultural lands due to low productivity. 

 

 

B. Factor generation 

Figures 3a to 3e display important factors affecting soil 

erosion in the study area, including crop management (C-

factor), soil erodibility (K-factor), slope length and 

steepness (LS-factor), conservation practices (P-factor) 

and rainfall erosivity (R-factor) over a 20-year period. 

These figures serve as formal and objective 

representations of the key elements influencing soil 

erosion in the region. 

 

  

  

 

 

C. Multiple linear regression analysis 

A multiple linear regression model was used to estimate 

soil erosion based on five predictor variables: Kfactor, 

Cfactor, Pfactor, LSfactor, and Rfactor. The model was 

significant (p-value < 2.2e-16) with an adjusted R-squared 

value of 0.7028, indicating that 70.28% of the soil erosion 

variability could be explained by the included variables. 

LSfactor was found to be the most important predictor, 

followed by Cfactor, Pfactor, Rfactor, and Kfactor. The 

positive coefficients for Cfactor and Pfactor suggest that 

increased vegetation cover leads to higher soil erosion. 

Surprisingly, the coefficient for rainfall (Rfactor) was 

relatively low, possibly due to the study area's high 

rainfall intensity leading to soil compaction. Overall, the 

results highlight the significance of topography and soil 

factors in predicting soil erosion and can inform erosion 

control strategies and land management practices. Further 

research is needed to better understand the relationships 

between these factors and improve soil erosion models. 

 

 

D. Soil erosion assessment 

i) RUSLE model: According to the RUSLE model, the 

soil erosion hazard map for the Kalu river catchment 

indicates that approximately 0.04% of the total land 

area is highly vulnerable to soil erosion, with 0.03% in 

the high-erosion hazard category and 0.01% in the 

very-high category. Additionally, around 0.05% of the 

land area is moderately vulnerable to soil erosion. The 

findings also reveal that the average annual soil 

erosion in 2000 was 0.138, with a maximum annual 

soil erosion of 186.651. By the year 2020, the 

percentage of land area vulnerable to soil erosion 

increased to 0.02%. 

 

  

Figure 4. Soil erosion map from RUSLE model: a2020; b2000 

 

ii) ANN model: A research study developed an Artificial 

Neural Network (ANN) model in Python to predict 

soil erosion using factors such as K-factor, C-factor, 

P-factor, LS-factor, and R-factor. The dataset had 

625,000 observations with variables. Correlation 

analysis revealed a strong positive correlation 

between LS-factor and R-factor with soil erosion, 

while K-factor had a negative correlation. The dataset 

was normalized using the MinMaxScaler function 

from Scikit-learn. After normalization, the target 

variable (soil erosion) had a mean of 0.000723 and a 

standard deviation of 0.006464. The range of the 

target variable was between 0 and 1, with the 75th 

percentile at 0.000428 and the maximum value at 1. 

The dataset was split into training (75%), testing 

(15%), and validation (10%) sets. The model 

architecture consisted of three hidden layers with 30, 

15, and 1 neurons, respectively. The model was 

trained, tested, and validated using the respective 

datasets. The model's performance was evaluated 

using R-squared values, MSE, and RMSE. The ANN 

model performed well on all datasets, with R-squared 

values of 0.73, 0.77, and 0.76 for the training, testing, 

and validation datasets, respectively. The MSE and 

RMSE values were both zero for all datasets, 

indicating accurate and precise predictions. 
 

 

Figure 5. Soil erosion map from ANN for 2020 

a b 

c d 

e Figure 3. Factor maps: a C 

factor ; b K factor; c LS 

factor; d P factor; e R factor 

a b 
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E. Validation by ROC Curve 

The assessment of soil erosion prediction models involves 

a crucial step of validation. To validate the models, 104 

landslide locations were utilized and the accuracy of the 

models was measured by the area under the curve (AUC) 

of the Receiver Operating Characteristic (ROC) curve. 

The results showed that the RUSLE model had an AUC of 

0.706 (70%), while the ANN model had an AUC of 0.647. 

The AUC value of the RUSLE model was in the 

"satisfactory"" level of accuracy, while the ANN model 

was in the "poor" level. The RUSLE and ANN models 

have different strengths and weaknesses in predicting soil 

erosion susceptibility. 

 

The RUSLE model is more accurate in areas where the 

physical characteristics of the soil are well understood, 

while the ANN model is more suitable for areas where the 

soil characteristics are complex and difficult to model 

using physical equations. Future studies may investigate 

hybrid models that combine the strengths of both models 

to improve the accuracy of soil erosion predictions. 
 

 

 

 

 

 

 

 

 

 

F. Land-Use Change and its Correlation with Landslides 

This research computed the Landslide Frequency Ratio 

(LFR) for various land-use categories in 2020. The results 

indicated that land-use categories pertaining to agriculture 

and urban areas exhibited higher LFR values (>1), 

suggesting a stronger association between these particular 

land-use categories and occurrences of landslides. The 

analysis revealed that RDZs A1, A2, A3, A8, A10, and 

A11 had LFR values greater than 1(Figure 6). These 

findings suggest that an increase in agricultural area may 

be linked to an increase in landslide occurrence in these 

RDZs. It is important to consider the impact of land-use 

change on landslide incidents in each RDZ to mitigate the 

risks associated with landslides. 
 

Table 1 Landslide frequency ratio for each land-use 

 

 

 

 

 

 

Figure 6. Land-use change and landslide frequency ratio (LFR) 

over the river distribution zones (RDZs) 

 

G. Soil Erosion Hazard and Its Correlation with 

Landslide 

To effectively implement soil conservation practices, it is 

crucial to identify and prioritize areas that are highly 

susceptible to soil erosion. A map of river distribution 

zones (RDZs) and an inventory of landslides(Figure 7) 

were used to assess and map the hazard of soil 

erosion(Figure 8). These maps were then overlaid, 

resulting in a map that shows the frequency of landslides 

in each RDZ based on different erosion hazard 

classes(Figure 9). This information can be utilized to 

prioritize the implementation of soil conservation 

practices in the areas that are most at risk. 

 

 

Figure 7. River distribution 

zones with Landslide 

inventory  map 

 

Figure 8. Soil erosion hazard 

map with landslide locations 

 

 

 

 

 

Figure 9. Area covered by soil erosion hazard classes of each 

RDZ 
 

The correlation between soil erosion hazard classes and 

the Landslide Frequency Ratio (LFR) was analyzed using 

statistical methods to determine the LFR values for each 

RDZ as in table 2. 

Area Under the Curve 

 

Test Result Variable(s) Area 

RUSLE 0.706 

ANN 0.647 
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Table 2 Landslide frequency ratios of the RDZ 

 
 

According to Table 2, RDZs A8 have the highest landslide 

frequency ratios, reaching a value of nearly 2. These 

RDZs are primarily used for agriculture. And the RDZs 

with the highest percentages of 'high' and 'very high' soil 

erosion categories are A11, A4, and A8. 

 

Based on the LFR, average soil erosion rate, and land-use 

change values, RDZs A8 and A11 exhibit high to very 

high values for these parameters. Consequently, A8 and 

A11 are the highest priority RDZs for soil conservation in 

the Kalu River basin, as indicated in Table 3. 

Table 3 Prioritization of RDZ 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

The research objective was to quantify and spatially map 

the amount of yearly soil loss in the Kalu river catchment 

and determine the spatial pattern of soil erosion risk 

between 2000 and 2020. The mean soil erosion in 2020 

and 2000 was found to be 0.12149226324467t ha-1 year-1 

and 0.13872407524966t ha-1 year-1, respectively. Multiple 

linear regression analysis was used to determine the 

coefficients of the RUSLE model variables, namely K 

factor, R factor, P factor, C factor, and LS factor, and their 

impact on soil erosion. The highest coefficient value was 

observed for the K factor, followed by the LS factor, the P 

factor, the C factor and the R factor, indicating their 

respective levels of influence on soil erosion. The results 

of the study provide valuable insights into the factors 

affecting soil erosion and can be used to develop effective 

soil conservation strategies for sustainable land 

management. 

 

An Artificial Neural Network (ANN) model was used to 

accurately predict soil erosion with a mean value of 

0.9872220577728t ha-1 year-1. Future research can expand 

on this study by exploring the use of other machine 

learning techniques to predict soil erosion and comparing 

their accuracy with the ANN model. The results of this 

The study's results indicate that the RUSLE model is a 

more effective tool for evaluating soil erosion 

susceptibility in the specific study area than the ANN 

model. The RUSLE model achieved an AUC of 0.706, 

indicating excellent predictive ability, while the ANN 

model achieved an AUC of 0.647. This comparison 

allowed for the identification of each model's strengths 

and weaknesses in prediction, providing valuable insights 

for decision-makers and stakeholders involved in soil 

conservation and management. 

 

The research findings demonstrate that soil erosion has 

affected the sub-catchments differently, with sub-

catchment A10 displaying the highest soil erosion value, 

whereas sub-catchment A4 displayed the lowest. 

Additionally, the landslide frequency ratio values varied 

significantly among the sub-catchments, with sub-

catchment A8 recording the highest value of 2.37, while 

sub-catchment A6 showed no recorded landslides, 

indicating a value of 0. By categorizing the sub-

catchments based on the severity of soil erosion, the 

research objective has been achieved, and these rankings 

can serve as a useful tool for selecting and implementing 

This study highlights the importance of estimating soil 

erosion rates and creating soil erosion hazard zonation 

maps to identify areas for soil conservation practices and 

land management. The Landslide Frequency Ratio (LFR) 

was used to establish a correlation between soil erosion 

hazard classes and the frequency of landslides. The 

research findings reveal that the Kalu River basin's RDZs 

A8 and A11 are high-priority areas for soil conservation 

measures due to their high to very high LFR, average soil 

erosion rate, and land-use change. 

 

The research emphasizes the need for policymakers, land-

use planners, and farmers to prioritize areas for soil 

conservation practices and manage land sustainably based 

on empirical data. The study also highlights the 

importance of monitoring soil erosion and understanding 

the factors that contribute to it. The research contributes to 

promoting sustainable land use practices and protecting 

the environment in the Kalu River basin and beyond. 
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