

21

International Journal of Research in Computing (2820-2139)
Volume 02, No. 01, July 2023.

Performance Analysis of Docker-based Database
Management Systems Compared to Virtual
Machine-based Systems: A Comparative Study

WMCJT Kithulwatta1,2, KPN Jayasena3, BTGS Kumara3 and RMKT Rathnayaka4
1Faculty of Graduate Studies, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
2Department of Information and Communication Technology, Faculty of Technological Studies, Uva Wellassa University of Sri Lanka,
Badulla, Sri Lanka
3Department of Computing and Information Systems, Faculty of Computing, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri
Lanka
4Department of Physical Sciences and Technology, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri
Lanka

Corresponding Author: W. M. C. J. T. Kithulwatta, Email: chirantha@uwu.ac.lk and chiranthajtk@gmail.com

ABSTRACT Computer virtualization is a very old technology. Due to a lot of technical barriers, computer containerization has
been introduced recently. Nowadays, computer containerization is playing a major role in information technology and
containerization is a trending topic. Among the practitioner of information technology, a lot of software services are moving to
containerization instead of traditional virtual machines. Among the most famous software services: database management systems
are a leading service. Among most computer containerization technologies, Docker is the most popular and trending container
vendor. Therefore, identification of the performance of database management systems on the Docker-based platform is an essential
task for the practitioner. This research study aims to identify the practical aspects of each database management system on the
Docker-based infrastructure for main database management system operations. For the study: Ubuntu 18.04 Long Term Support
(used package with architecture: GNU/Linux 4.15.0-112-generic x86_64) cloud-based operating system was used and on that
operating system the Docker infrastructure was launched. Docker version 19.03.9 was launched for the study. On Docker: MySQL,
PostgreSQL, and MongoDB database management system containers were launched separately. SELECT, DELETE, UPDATE,
and INSERT operations were used for the performance evaluations of database management system response times. This research
identified that there was an increase in the performance of the Docker platform with a 95% confidence interval level for all data
records to virtual machine-based platforms. Finally, the research study identified that Docker-based database management system
has a quick response time than virtual machine-based database management systems.

KEYWORDS: Containers, Database Management Systems, Docker, MongoDB, MySQL, PostgreSQL

I. Introduction

Computer containerization is a trending technology that brings
the computing environment as a logically packaged
mechanism. Packaged containers consist of all required
environments with essential binaries, dependencies, libraries,
and configuration files to execute any such kind of software
application and/or service. Containers can be deployed in any
computer environment such as a public cloud centre, private
cloud centre, or any personal computer.

Within the practitioner of containers, Docker is one of the
trending container management technologies. Other than
Docker: Rkt and Linux containers are available as container
technologies.

As mentioned in the official Docker documentation, most of
the widely used computing tools are engaged with Docker
containerization. A few of them are Bitbucket, GitLab, GitHub,
NGINX, Redis, Jenkins, JFrog, MongoDB, Visual Studio
Code, etc. [3].
Relational Database Management Systems (RDBMS) is a
specific database management system specification, which is
based on the relational model and Structured Query Language
(SQL). Most modern database systems are RDBMSs. MySQL,
PostgreSQL, IBM DB2, MS SQL Server, and Oracle are the
best examples of RDBMSs [6].

Within the existing research studies, the authors have evaluated
the database management systems by considering the taken
time to particular SQL queries and response time commonly.

22

This research study aims to identify the practical aspects of
each database management system on the Docker-based
infrastructure for main database management system
operations. By considering the response time, practically,
information technology academics and practitioners will be
able to select suitable database management system technology
for the applications.

The overall research study provides answers to the below
research questions.

RQ1: How are the performances of relational database
management system Docker containers over virtual
machine-based database management systems?

RQ2: How are the performances of the no-SQL database

management system Docker containers over virtual
machine-based database management systems?

RQ3: How to launch no-SQL and relational database

management systems on Docker and virtual machine-
based infrastructures?

II. Literature review

Server containerization has emerged with various reviews here
and there. Practically, the vulnerability of data, complex
criteria for resources, and network problems are often cited as
drawbacks. Nevertheless, the usage of containerization has
increased, since most applications are running with
containerized databases which are migrated from traditional
virtual machines. Software development and software
infrastructure-providing organizations of all sizes (from small
start-ups to multinational, proven microservices companies)
are using containers. Even the containerization has been taken
over by well-known companies including Google, Amazon,
Oracle, and Microsoft, databases are playing a major role.

 In addition to the database operating environment, the
containerization of the database involves databases inside a
container to allow data to be loaded onto a virtual machine and
executed separately. The article [14] has mentioned four
special factors that support the usage of the database in
containers. Those are the usage of the same configurations or
ports for all containers, resilience, resource, and storage, cluster
upscale or downscale, and data locality and networking.

According to the above first factor, the containerized
architecture removes some of the overhead associated with a
distributed system that supports various node types. This kind
of distributed applications and systems required the
management of separate containers that also require multiple
configurations. One kind of configuration type is supported for
database containerization. As well as, resilience, resources, and
storage are considered as the second factor. But
containerization should not be left with data inside them.

According to typical database scenarios, it is often important to
have database replications or export data from a central storage
system. This process makes more cost and significantly slows
down the performance. Database Management Systems are
executing like any other sever-side applications but they are
consuming more CPU-intensive and memory-intensive, have
high status, and occupy storage space. The article [14] has
expressed that all principle functions are in same for containers
as well. In addition to that, the states of the database engine can
be controlled, resources can be limited and access to the
network can be restricted.

According to the third factor, the practice expresses the
ambiguity as to how effective the application will be and the
volume needed by enhancing the elasticity of the network.
Database containerization takes into account the elasticity of
the software applications. As well as by growing and shrinking
most suitable infrastructure is provided. The article [14] has
presented that data can be replicated in the background by
adding extra nodes to the container cluster. According to the
last factor, network scaling was a major challenge within the
modern virtualized infrastructure. Load balancers typically
take all traffic on the first run and then distribute it to the
application containers. Thereafter, application containers
interact with databases that produce more traffic. Hence
containerization puts the database and the application back
together, by removing any network troubles.

 As presented in the white paper [15], databases may be
available on standard stand-alone servers, on-premise clusters,
or in PaaS (Platform as a Service) cloud services such as Azure
SQL databases. For the development and test environments,
however, it is practical to run the databases as containers, since
no external dependencies are required and the entire application
is started by simply executing the docker-compose-up
command. The existence of these databases as containers is
also ideal for integration tests since the database is started in
the container and is always filled with the same data so that
tests are more predictable.

 Commonly, NoSQL database management systems are
suitable for geospatial data and big data environments. The
authors of [16] have mentioned that MySQL is a very mature
RDBMS, a popular and inexpensive option. Furthermore,
MySQL is an open-source RDBMS that is distributed,
developed, and supported by Oracle Corporation. RDBMSs
have identified that they are with remarkable features to reform
transactional updates and handle the underlying consistency
issues considerably well.

III. Methodology

To evaluate and make the comparison for Docker container-
based database management systems, the Docker containerized

23

infrastructure was launched on Ubuntu 18.04 Long Term
Support (used package with architecture: GNU/Linux 4.15.0-
112-generic x86_64) cloud-based operating system. The host
computer was with 15 GB memory capacity and 1 Gbps
network bandwidth. On that host computer infrastructure,
Docker version 19.03.9 was launched. Both Docker client and
server engine communities are version 19.03.9. Docker API
(Application Program Interface) version was 1.40 [17].

For the experimental evaluation: 5, 50, 500, 5000, and 50000
data records were used for each database management system.
For the evaluation: MySQL and PostgreSQL database
management systems were used as relational database
management systems. MongoDB was used as the no-SQL
database management system. To access each database
management system remotely, MySQL Workbench, pgadmin,
and Robo 3T (formerly Robomongo) were used respectively
for the MySQL, PostgreSQL, and MongoDB database
management systems.

The used database schema is as follows. For the queries, join
based queries were used by considering the tables oderdetails,
orders, and customers.

Table "customers" {
 "customerNumber" int(11) [pk, not null]
 "customerName" varchar(50) [not null]
 "contactLastName" varchar(50) [not null]
 "contactFirstName" varchar(50) [not null]
 "phone" varchar(50) [not null]
 "addressLine1" varchar(50) [not null]
 "addressLine2" varchar(50) [default: NULL]
 "city" varchar(50) [not null]
 "state" varchar(50) [default: NULL]
 "postalCode" varchar(15) [default: NULL]
 "country" varchar(50) [not null]
 "salesRepEmployeeNumber" int(11) [default: NULL]
 "creditLimit" decimal(10,2) [default: NULL]

Indexes {
 salesRepEmployeeNumber [name: "salesRepEmployeeNumber"]
}
}

Table "employees" {
 "employeeNumber" int(11) [pk, not null]
 "lastName" varchar(50) [not null]
 "firstName" varchar(50) [not null]
 "extension" varchar(10) [not null]
 "email" varchar(100) [not null]
 "officeCode" varchar(10) [not null]
 "reportsTo" int(11) [default: NULL]
 "jobTitle" varchar(50) [not null]

Indexes {
 reportsTo [name: "reportsTo"]
 officeCode [name: "officeCode"]
}
}

Table "offices" {
 "officeCode" varchar(10) [pk, not null]
 "city" varchar(50) [not null]
 "phone" varchar(50) [not null]
 "addressLine1" varchar(50) [not null]
 "addressLine2" varchar(50) [default: NULL]
 "state" varchar(50) [default: NULL]

 "country" varchar(50) [not null]
 "postalCode" varchar(15) [not null]
 "territory" varchar(10) [not null]
}

Table "orderdetails" {
 "orderNumber" int(11) [not null]
 "productCode" varchar(15) [not null]
 "quantityOrdered" int(11) [not null]
 "priceEach" decimal(10,2) [not null]
 "orderLineNumber" smallint(6) [not null]

Indexes {
 productCode [name: "productCode"]
 (orderNumber, productCode) [pk]
}
}

Table "orders" {
 "orderNumber" int(11) [pk, not null]
 "orderDate" date [not null]
 "requiredDate" date [not null]
 "shippedDate" date [default: NULL]
 "status" varchar(15) [not null]
 "comments" text
 "customerNumber" int(11) [not null]

Indexes {
 customerNumber [name: "customerNumber"]
}
}

Table "payments" {
 "customerNumber" int(11) [not null]
 "checkNumber" varchar(50) [not null]
 "paymentDate" date [not null]
 "amount" decimal(10,2) [not null]

Indexes {
 (customerNumber, checkNumber) [pk]
}
}

Table "productlines" {
 "productLine" varchar(50) [pk, not null]
 "textDescription" varchar(4000) [default: NULL]
 "htmlDescription" mediumtext
 "image" mediumblob
}

Table "products" {
 "productCode" varchar(15) [pk, not null]
 "productName" varchar(70) [not null]
 "productLine" varchar(50) [not null]
 "productScale" varchar(10) [not null]
 "productVendor" varchar(50) [not null]
 "productDescription" text [not null]
 "quantityInStock" smallint(6) [not null]
 "buyPrice" decimal(10,2) [not null]
 "MSRP" decimal(10,2) [not null]

Indexes {
 productLine [name: "productLine"]
}
}

Ref "customers_ibfk_1":"employees"."employeeNumber" <
"customers"."salesRepEmployeeNumber"

Ref "employees_ibfk_1":"employees"."employeeNumber" <
"employees"."reportsTo"

Ref "employees_ibfk_2":"offices"."officeCode" < "employees"."officeCode"

Ref "orderdetails_ibfk_1":"orders"."orderNumber" <
"orderdetails"."orderNumber"

24

500005000500505

8

7

6

5

4

3

2

1

0

Data Records

M
ea

n
of

 R
es

po
ns

e
Ti

m
e

fo
r M

yS
Q

L

Docker
Virtual Machine

Infrastructure

SELECT query response time in MySQL for Docker and Virtual Machines

Figure 1: SELECT query response time for MySQL

Ref "orderdetails_ibfk_2":"products"."productCode" <
"orderdetails"."productCode"

Ref "orders_ibfk_1":"customers"."customerNumber" <
"orders"."customerNumber"

Ref "payments_ibfk_1":"customers"."customerNumber" <
"payments"."customerNumber"

Ref "products_ibfk_1":"productlines"."productLine" <
"products"."productLine"

After launching the Docker-based database management
system containers, the same database management systems
were launched on a virtual machine-based environment. For
that, the host computer was with the same configurations as the
Docker infrastructure host computer.

Applied computational steps to evaluate the performance are
mentioned below pseudocode.

[Pseudocode]
(1) INPUT: EXECUTED_QUERY
(2) OUTPUT: QUERY_EXECUTION_TIME
(3) BEGIN
(4) ESTABLISH the Database Connection
(5) CHECK the Database Connection
(6) IF (Connection == Success)
(7) SELECT the Option

(8) IF (Option == Selection)
(9) SELECT the Number of Records to Be Selected
(10) PASS the Value to Proceed to DBMS
(11) MEASURE the execution time

(12) ELSE IF (Option == Deletion)
(13) SELECT the Number of Records to Be Deleted
(14) PASS the Value to Proceed to DBMS
(15) MEASURE the execution time

(16) ELSE IF (Option == Updating)
(17) SELECT the Number of Records to Be Updated
(18) PASS the Value to Be Proceed to DBMS
(19) MEASURE the execution time

(20) ELSE IF (Option == Insertion)
(21) SELECT the Number of Records to Be Inserted
(22) PASS the Value to Proceed to DBMS
(23) MEASURE the execution time

(24) DISCONNECT the Database Connection
(25) ELSE
(26) DISPLAY the connection error
(27) FINISH

For the experiment, MySQL version 8.0.31, PostgreSQL
version 14.5, and MongoDB version 5.0 were used. Between
the cloud-hosted Docker infrastructure and local remote
computer a strong internet connection [upload speed 93.10
Mbps and download speed 94.41 Mbps] was established to
eliminate all kinds of external traffics and omit all kinds of
external effects during the experimental study.

IV. Results and discussion

After launching the Docker-based database management
system containers, the respective database management

systems were evaluated at the next stage. Any software
application engages with a database management system for
the basic CRUD (Create/Insert, Read/Select, Update, and
Delete) operations as a thumb rule. Hence to evaluate the
database engine responses, the response time for each SQL
operation was measured. For the study, the most popular and
open-source two relational database management systems and
one no-SQL database management system were used. The
response time was measured for the SELECT, UPDATE,
INSERT, and DELETE operations.

A. SELECT Operation

The SELECT statement is used to select data from a database.
The SELECT operation was executed for the selected three
database management systems for the Docker-hosted and
virtual machine-based infrastructures. The corresponding
response time/query execution time was presented below in
Table 1 for all infrastructures.

Table 1: Response time for SELECT operation

Data

Record

s

Response Time (s)

MySQL PostgreSQL MongoDB

Docke

r

Virtual

Machin

e

Docke

r

Virtual

Machin

e

Docke

r

Virtual

Machin

e

5 0.3 0.32 0.37 0.3 0.014 0.015

50 0.3064 0.35 0.4284 0.4147 0.087 0.092

500 0.6684 0.8172 1.6137 1.8835 0.1681 0.1763

5000 1.476 2.3146 1.9478 2.0250 0.4274 0.4431

50,000 3.5891 7.5341 4.8790 3.6941 1.0654 1.4145

.
Figure 1 given below, presents the graphical representation of
the SELECT query response time (execution time) for Docker-
hosted and virtual machine-based MySQL database
management system engines. The y-axis is denoting the
response time and the x-axis is denoting the number of data
records. The blue-coloured line is presenting the Docker-
hosted MySQL database management system engine and the
red-coloured line is presenting the virtual machine-based
MySQL database management system engines.

25

500005000500505

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Data Records

M
ea

n
of

 R
es

po
ns

e
Ti

m
e

fo
r M

on
go

D
B Docker

Virtual Machine

Infrastructure

Response Time for MongoDB in Docker and Virtual Machines

Figure 2: SELECT query response time for PostgreSQL

Figure 3: SELECT query response time for MongoDB

500005000500505

5

4

3

2

1

0

Data Records

M
ea

n
of

 R
es

po
ns

e
Ti

m
e

fo
r P

os
tg

re
SQ

L Docker
Virtual Machine

Infrastructure

Response Time for PostgreSQL in Docker and Virtual Machines

The above figure 1 presents that the Docker-based MySQL
database management system engine has a lower response time
for the particular SELECT query than the corresponding virtual
machine-based MySQL database management system engine.
For the lower data records, both MySQL database management
system engine infrastructures present approximately the same
response time. But for the higher data records, the Docker-
based MySQL database management system engine
infrastructure has a lower query response time than the virtual
machine-based MySQL database management system engine.

A dependent t-test was steered to assess the performance of
MySQL DBMS for 50000 data records for SELECT query
execution. The results showed a significant performance
improvement in query execution time on Docker
(Mean=3.5891, Standard Deviation=0.00008) to query
execution time on VM(Mean=7.53407, Standard
Deviation=0.00007), t(9)=107590.09, p-value=0.000(two-
tailed). This means the increase in the performance of Docker
was 3.94489 with a 95% confidence interval level.

Figure 2 below, presents the graphical representation of the
SELECT query response time (execution time) for Docker-
hosted and virtual machine-based PostgreSQL database
management system engines. The y-axis is denoting the
response time and the x-axis is denoting the number of data
records. The blue-coloured line is presenting the Docker-
hosted PostgreSQL database management system engine and
the red coloured line is presenting the virtual machine-based
PostgreSQL database management system engines.

.

The above figure 2 presents that the Docker-based PostgreSQL
database management system engine has a higher response
time for the particular SELECT query than the corresponding
virtual machine-based PostgreSQL database management
system engine. For the lower data records, both PostgreSQL
database management system engine infrastructures present
approximately the same response time but for the 500 data

records, the Docker-based PostgreSQL database management
system engine has a lower response time than the virtual
machine-based PostgreSQL database management system
engine.
A dependent t-test was steered to assess the performance of
PostgreSQL DBMS for 5000 data records for SELECT query
execution. The results showed a significant performance
improvement in query execution time on Docker
(Mean=1.9478, Standard Deviation=0.00005) to query
execution time on VM(Mean=2.025, Standard
Deviation=0.00008), t(9)=3661.92, p-value=0.000(two-tailed).
This means the increase in the performance of Docker was
0.077152 with a 95% confidence interval level for 5000 data
records.

Figure 3 below, presents the graphical representation of the
SELECT query response time (execution time) for Docker-
hosted and virtual machine-based MongoDB database
management system engines. The y-axis is denoting the
response time and the x-axis is denoting the number of data
records. The blue-coloured line is presenting the Docker-
hosted MongoDB database management system engine and the
red-coloured line is presenting the virtual machine-based
MongoDB database management system engines.

The above figure 3 presents that the Docker-based MongoDB
database management system engine has a lower response time
for the particular SELECT query than the corresponding virtual
machine-based MongoDB database management system
engine. For the lower data records, both MongoDB database
management system engine infrastructures present
approximately the same response time. But for the higher data
records, the Docker-based MongoDB database management
system engine infrastructure has a lower query response time
than the virtual machine-based MongoDB database
management system engine.

A dependent t-test was steered to assess the performance of
MongoDB DBMS for 50000 data records for SELECT query

26

500005000500505

8

7

6

5

4

3

2

1

0

Data Records

M
ea

n
of

 R
es

po
ns

e
Ti

m
e

fo
r M

yS
Q

L

Docker
Virtual Machine

Infrastructure

Response Time for Docker and Virtual Machine based MySQL

500005000500505

9

8

7

6

5

4

3

2

1

0

Data Records

M
ea

n
of

 R
es

po
ns

e
Ti

m
e

fo
r P

os
tg

re
SQ

L Docker
Virtual Machine

Infrastructure

Response Time for Docker and Virtual Machine based PostgreSQL

Figure 5: DELETE query response time for PostgreSQL

Figure 4: DELETE query response time for MYSQL

execution. The results showed a significant performance
improvement in query execution time on Docker
(Mean=1.06540, Standard Deviation=0.00005) to query
execution time on VM(Mean=1.41450, Standard
Deviation=0.00009), t(9)=8851.30, p-value=0.000(two-tailed).
This means the increase in the performance of Docker was
0.349011 with a 95% confidence interval level.

Overall, Docker-based database management systems are
presenting better performance than the virtual machine-based
approach on the query execution time.

B. DELETE Operation

The DELETE statement is used to delete data from a database.
The DELETE operation was executed for the selected three
database management systems for the Docker-hosted and
virtual machine-based infrastructures. The corresponding
response time/query execution time was presented below in
Table 2 for all infrastructures.

Table 2:Response time for DELETE operation

Data

Record

s

Response Time (s)

MySQL PostgreSQL MongoDB

Docke

r

Virtual

Machin

e

Docke

r

Virtual

Machin

e

Docke

r

Virtual

Machin

e

5 0.4 0.43 0.39 0.432 0.063 0.063

50 0.4157 0.494 0.4198 0.4277 0.088 0.097

500 0.6891 0.9641 0.7642 0.9471 0.1170 0.1287

5000 1.561 2.5873 1.7341 1.7753 0.2197 0.2947

50,000 3.9172 7.8973 5.6917 8.4782 0.9784 1.6810

Figure 4 below, presents the graphical representation of the
DELETE query response time (execution time) for Docker-
hosted and virtual machine-based MySQL database
management system engines. The y-axis is denoting the
response time and the x-axis is denoting the number of data
records. The blue-coloured line is presenting the Docker-
hosted MySQL database management system engine and the
red-coloured line is presenting the virtual machine-based
MySQL database management system engines.

Figure 4 above, presents that the Docker-based MySQL
database management system engine has a lower response time
for the particular DELETE query than the corresponding virtual
machine-based MySQL database management system engine.
For the lower data records, both MySQL database management
system engine infrastructures present approximately the same
response time. But for the higher data records, the Docker-
based MySQL database management system engine
infrastructure has a lower query response time than the virtual
machine-based MySQL database management system engine.

A dependent t-test was steered to assess the performance of
MySQL DBMS for 50000 data records for DELETE query
execution time. The results showed a significant improvement
in the query execution time on Docker (Mean=3.9172,
Standard Deviation=0.00014) to query execution time on
VM(Mean=7.8973, Standard Deviation=0.00005),
t(9)=94396.36, p-value=0.000(two-tailed). This means the
increase in the performance of the proposed Docker platform
was 3.98 with a 95% confidence interval level.

Figure 5 below, presents the graphical representation of the
DELETE query response time (execution time) for Docker-
hosted and virtual machine-based PostgreSQL database
management system engines. The y-axis is denoting the
response time and the x-axis is denoting the number of data
records. The blue-coloured line is presenting the Docker-
hosted PostgreSQL database management system engine and
the red coloured line is presenting the virtual machine-based
PostgreSQL database management system engines.

The above figure 5 presents that the Docker-based PostgreSQL
database management system engine has a lower response time
for the particular DELETE query than the corresponding virtual
machine-based MySQL database management system engine.
For the lower data records, both PostgreSQL database
management system engine infrastructures present
approximately the same response time. But for the higher data
records, the Docker-based PostgreSQL database management

27

500005000500505

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Data Records

M
ea

n
of

 R
es

po
ns

e
Ti

m
e

fo
r M

on
go

D
B Docker

Virtual Machine

Infrastructure

Response Time for Docker and Virtual Machine based MongoDB

Figure 6: DELETE query response time for MongoDB

system engine infrastructure has a lower query response time
than the virtual machine-based PostgreSQL database
management system engine.

A dependent t-test was steered to assess the performance of
PostgreSQL DBMS for 50000 data records for DELETE query
execution time. The results showed a significant improvement
in the query execution time on Docker (Mean=5.6917,
Standard Deviation=0.00015) to query execution time on
VM(Mean=8.4782, Standard Deviation=0.00007),
t(9)=59110.59, p-value=0.000(two-tailed). This means the
increase in the performance of the proposed Docker
infrastructure was 2.78639 with a 95% confidence interval
level.

Below figure 6 presents the graphical representation of the
DELETE query response time (execution time) for Docker-
hosted and virtual machine-based MongoDB database
management system engines. The y-axis is denoting the
response time and the x-axis is denoting the number of data
records. The blue-coloured line is presenting the Docker-
hosted MongoDB database management system engine and the
red-coloured line is presenting the virtual machine-based
MongoDB database management system engines.

The above figure 6 presents that the Docker-based MongoDB
database management system engine has a lower response time
for the particular DELETE query than the corresponding virtual
machine-based MongoDB database management system
engine. For the lower data records, both MongoDB database
management system engine infrastructures present
approximately the same response time. But for the higher data
records, the Docker-based MongoDB database management
system engine infrastructure has a lower query response time
than the virtual machine-based MongoDB database
management system engine.

A dependent t-test was steered to assess the performance of
MongoDB DBMS for 50000 data records for DELETE query

execution time. The results showed a significant improvement
in the query execution time on Docker (Mean=0.9784,
Standard Deviation=0.00005) to query execution time on
VM(Mean=1.68100, Standard Deviation=0.00007),
t(9)=21078.00, p-value=0.000(two-tailed). This means the
increase in the performance of Docker was 0.702525 with a
95% confidence interval level.

Overall, the Docker-based PostgreSQL database management
system engine has a higher response time than the Docker-
based MySQL database management system engines for the
particular DELETE query.

C. UPDATE Operation

The UPDATE statement is used to update data from a database.
The UPDATE operation was executed for the selected three
database management systems for the Docker-hosted and
virtual machine-based infrastructures. The corresponding
response time/query execution time was presented in below
table 3 for all infrastructures.

Table 3: Response time for UPDATE operation

Data

Record

s

Response Time (s)

MySQL PostgreSQL MongoDB

Docke

r

Virtual

Machin

e

Docke

r

Virtual

Machin

e

Docke

r

Virtual

Machin

e

5 0.4961 0.5084 0.5149 0.5331 0.0743 0.087

50 0.5618 0.6347 0.7841 0.8146 0.0971 0.0991

500 0.7156 1.1433 0.7547 0.9947 0.0997 0.1973

5000 1.7891 1.8216 1.8759 1.1724 1.1679 1.2640

50,000 4.0870 8.1735 5.1157 8.8875 1.5441 1.9718

Below figure 7 presents the graphical representation of the
UPDATE query response time (execution time) for Docker-
hosted and virtual machine-based MySQL database
management system engines. The y-axis is denoting the
response time and the x-axis is denoting the number of data
records. The blue-coloured line is presenting the Docker-
hosted MySQL database management system engine and the
red-coloured line is presenting the virtual machine-based
MySQL database management system engines.

28

500005000500505

9

8

7

6

5

4

3

2

1

0

Data Records

M
ea

n
of

 R
es

po
ns

e
Ti

m
e

fo
r M

yS
Q

L

Docker
Virtual Machine

Infrastructure

Response Time for Docker and Virtual Machine based MySQL

500005000500505

9

8

7

6

5

4

3

2

1

0

Data Records

M
ea

n
of

 R
es

po
ns

e
Ti

m
e

fo
r P

os
tg

re
SQ

L Docker
Virtual Machine

Infrastructure

Response Time for Docker and Virtual Machine based PostgreSQL

Figure 7: UPDATE query response time for MySQL Figure 8: UPDATE query response time for PostgreSQL

The above figure 7 presents that the Docker-based MySQL
database management system engine has a lower response time
for the particular UPDATE query than the corresponding
virtual machine-based MySQL database management system
engine. For the lower data records, both MySQL database
management system engine infrastructures present
approximately the same response time. But for the higher data
records, the Docker-based MySQL database management
system engine infrastructure has a lower query response time
than the virtual machine-based MySQL database management
system engine.

A dependent t-test was steered to assess the performance of
MySQL DBMS for 50000 data records for UPDATE query
execution time. The results showed a significant improvement
in the query execution time on Docker (Mean=4.087, Standard
Deviation=0.00007) to query execution time on
VM(Mean=8.1735, Standard Deviation=0.00013),
t(9)=137065.38, p-value=0.000(two-tailed). This means the
increase in the performance of the proposed Docker was
4.08643 with a 95% confidence interval level.

Below figure 8 presents the graphical representation of the
UPDATE query response time (execution time) for Docker-
hosted and virtual machine-based PostgreSQL database
management system engines. The y-axis is denoting the
response time and the x-axis is denoting the number of data
records. The blue-coloured line is presenting the Docker-
hosted PostgreSQL database management system engine and
the red coloured line is presenting the virtual machine-based
PostgreSQL database management system engines.

The above figure 8 presents that the Docker-based PostgreSQL
database management system engine has a lower response time
for the particular UPDATE query than the corresponding
virtual machine-based PostgreSQL database management
system engine. For the lower data records, both PostgreSQL
database management system engine infrastructures present
approximately the same response time. But for the higher data
records, the Docker-based PostgreSQL database management
system engine infrastructure has a lower query response time
than the virtual machine-based PostgreSQL database
management system engine. But for the 5000 data records, the
Docker-based PostgreSQL database management system
engine has presented a higher response time than the virtual
machine-based PostgreSQL database management system
engine.

A dependent t-test was steered to assess the performance of
PostgreSQL DBMS for 50000 data records for UPDATE query
execution time. The results showed a significant improvement
in the query execution time on Docker (Mean=5.1157,
Standard Deviation=0.00020) to query execution time on
VM(Mean=8.8875, Standard Deviation=0.00022),
t(9)=31877.53, p-value=0.000(two-tailed). This means the
increase in the performance of Docker was 3.77153 with a 95%
confidence interval level.

Below figure 9 presents the graphical representation of the
UPDATE query response time (execution time) for Docker-
hosted and virtual machine-based MongoDB database
management system engines. The y-axis is denoting the
response time and the x-axis is denoting the number of data
records. The blue-coloured line is presenting the Docker-
hosted MongoDB database management system engine and the
red-coloured line is presenting the virtual machine-based
MongoDB database management system engines.

29

500005000500505

2.0

1.5

1.0

0.5

0.0

Data Records

M
ea

n
of

 R
es

po
ns

e
Ti

m
e

fo
r M

on
go

D
B Docker

Virtual Machine

Infrastructure

Response Time for Docker and Virtual Machine based MongoDB

500005000500505

10

8

6

4

2

0

Data Records

M
ea

n
of

 R
es

po
ns

e
Ti

m
e

fo
r M

yS
Q

L

Docker
Virtual Machine

Infrastructure

Response Time for Docker and Virtual Machine based MySQL

Figure 10: INSERT query response time for MySQL

Figure 9: Update query response time for MongoDB

The above figure 9 presents that the Docker-based MongoDB
database management system engine has a lower response time
for the particular UPDATE query than the corresponding
virtual machine-based MongoDB database management
system engine. For the lower data records, both PostgreSQL
database management system engine infrastructures present
approximately the same response time. But for the higher data
records, the Docker-based PostgreSQL database management
system engine infrastructure has a lower query response time
than the virtual machine-based MySQL database management
system engine. But, the above figure is presenting a special
behaviour for the 5000 data records. That is, the response time
has a massive increment for the 5000 data records than other
all scenarios.

A dependent t-test was steered to assess the performance of
MongoDB DBMS for 50000 data records for UPDATE query
execution time. The results showed a significant improvement
in the query execution time on Docker (Mean=1.5441,
Standard Deviation=0.00011) to query execution time on
VM(Mean=1.9718, Standard Deviation=0.00005),
t(9)=10844.17, p-value=0.000(two-tailed). This means the
increase in the performance of the proposed Docker
infrastructure was 0.427611 with a 95% confidence interval
level.

The MySQL, PostgreSQL, and MongoDB database
management system engines have lower response times for the
Docker-based infrastructure than the virtual machine-based
infrastructure. The Docker-based PostgreSQL database
management system engine has a higher response time than
Docker-based MySQL database management system engines
for the particular UPDATE query.

D. INSERT Operation

The INSERT statement is used to insert or create data into a
database. The INSERT operation was executed for the selected
three database management systems for the Docker-hosted and

virtual machine-based infrastructures. The corresponding
response time/query execution time was presented below in
Table 4 for all infrastructures.

Table 4:Response time for INSERT query

Data

Record

s

Response Time (s)

MySQL PostgreSQL MongoDB

Docke

r

Virtual

Machin

e

Docke

r

Virtual

Machin

e

Docke

r

Virtual

Machin

e

5 0.6482 0.6641 0.7244 0.7573 0.1157 0.2748

50 0.7137 0.7237 0.7784 0.8104 0.2649 0.3113

500 0.8232 1.2424 1.1607 1.2115 0.4381 0.5719

5000 1.8716 2.4104 2.4467 2.5491 1.0816 1.1670

50,000 6.7360 10.1133 6.9818 10.6970 2.7366 3.4108

Below figure 10 presents the graphical representation of the
INSERT query response time (execution time) for Docker-
hosted and virtual machine-based MySQL database
management system engines. The y-axis is denoting the
response time and the x-axis is denoting the number of data
records. The blue-coloured line is presenting the Docker-
hosted MySQL database management system engine and the
red-coloured line is presenting the virtual machine-based
MySQL database management system engines.

The above figure 10 presents that the Docker-based MySQL
database management system engine has a lower response time
for the particular INSERT query than the corresponding virtual
machine-based MySQL database management system engine.
For the lower data records (less than 50), both MySQL database
management system engine infrastructures present
approximately the same response time. But for the higher data
records (more than 50), the Docker-based MySQL database
management system engine infrastructure has a lower query
response time than the virtual machine-based MySQL database
management system engine.

30

500005000500505

12

10

8

6

4

2

0

Data Records

M
ea

n
of

 R
es

po
ns

e
Ti

m
e

fo
r P

os
tg

re
SQ

L Docker
Virtual Machine

Infrastructure

Response Time for Docker and Virtual Machine based PostgreSQL

500005000500505

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Data Records

M
ea

n
of

 R
es

po
ns

e
Ti

m
e

fo
r M

on
go

D
B Docker

Virtual Machine

Infrastructure

Response Time for Docker and Virtual Machine based MongoDB

Figure 11:INSERT query response time for PostgreSQL

Figure 12: INSERT query response time for MongoDB

A dependent t-test was steered to assess the performance of
MySQL DBMS for 50000 data records for INSERT query
execution time. The results showed a significant improvement
in the query execution time on Docker (Mean=6.7360,
Standard Deviation=0.0002) to query execution time on
VM(Mean=10.1133, Standard Deviation=0.0001),
t(9)=75518.72, p-value=0.000(two-tailed). This means the
increase in the performance of the proposed Docker was 3.7720
with a 95% confidence interval level.

Below figure 11 presents the graphical representation of the
INSERT query response time (execution time) for Docker-
hosted and virtual machine-based PostgreSQL database
management system engines. The y-axis is denoting the
response time and the x-axis is denoting the number of data
records. The blue-coloured line is presenting the Docker-
hosted PostgreSQL database management system engine and
the red coloured line is presenting the virtual machine-based
PostgreSQL database management system engines.

The above figure 11 presents that the Docker-based
PostgreSQL database management system engine has a lower
response time for the particular INSERT query than the
corresponding virtual machine-based PostgreSQL database
management system engine for the higher data records. For the
lower data records 5-5000, both PostgreSQL database
management system engine infrastructures present
approximately the same response time.

A dependent t-test was steered to assess the performance of
PostgreSQL DBMS for 50000 data records for INSERT query
execution time. The results showed a significant improvement
in the query execution time on Docker (Mean=6.6918,
Standard Deviation=0.0000) to query execution time on
VM(Mean=10.6970, Standard Deviation=0.0002),
t(9)=71944.54, p-value=0.000(two-tailed). This means the
increase in the performance of the proposed Docker was
3.71508 with a 95% confidence interval level.

Below figure 12 presents the graphical representation of the
INSERT query response time (execution time) for Docker-
hosted and virtual machine-based MongoDB database
management system engines.

The y-axis is denoting the response time and the x-axis is
denoting the number of data records. The blue-coloured line is
presenting the Docker-hosted MongoDB database management
system engine and the red-coloured line is presenting the
virtual machine-based MongoDB database management
system engines.

The above figure 12 presents that the Docker-based MongoDB
database management system engine has a lower response time
for the particular INSERT query than the corresponding virtual
machine-based MongoDB database management system
engine.

A dependent t-test was steered to assess the performance of
MongoDB DBMS for 50000 data records for INSERT query
execution time. The results showed a significant improvement
in the query execution time on Docker (Mean=2.7366,
Standard Deviation=0.00034) to query execution time on
VM(Mean=3.4108, Standard Deviation=0.00005),
t(9)=6333.01, p-value=0.000(two-tailed). This means the
increase in the performance of the proposed Docker
infrastructure was 0.673959 with a 95% confidence interval
level.

The MySQL, PostgreSQL, and MongoDB database
management system engines have lower response times for the
Docker-based infrastructure than the virtual machine-based
infrastructure.

V. Conclusions

After the initial launch of the Docker engine, on the host
computer infrastructure: MySQL, PostgreSQL, and MongoDB
database management system containers were launched. The

31

particular queries were executed through the remote database
client software.

According to the experimental evaluation: Docker-based
relational database management system containers presented
the quickest response time for each query than traditional
virtual machine-based database management systems. As well
for the no-SQL database management systems also, Docker-
based containers presented the quickest response time than
traditional virtual machine-based database management
systems. Furthermore, overall no-SQL database management
system containers presented quicker response time than
relational database management system containers.

Shortly, Docker containers will play a major role in practical
information technology. As well the cloud computing, image
processing, artificial intelligence, and data science domains
will have oriented to the Docker container-based infrastructure.

REFERENCES

[1] John Paul Martin, A. Kandasamy, and K. Chandrasekaran.
2018. Exploring the support for high performance
applications in the container runtime environment. Hum.-
centric Comput. Inf. Sci. 8, 1, Article 124 (December 2018),
15 pages. DOI:https://doi.org/10.1186/s13673-017-0124-3

[2] B. I. Ismail et al., "Evaluation of Docker as Edge computing

platform," 2015 IEEE Conference on Open Systems
(ICOS), 2015, pp. 130-135, doi:
10.1109/ICOS.2015.7377291.

[3] 8 surprising facts about real Docker adoption, 2021.

[Online]. Available: https://www.datadoghq.com/docker-
adoption/. [Accessed: 25- Jun- 2021].

[4] Empowering App Development for Developers | Docker,

Docker, 2021. [Online]. Available:
https://www.docker.com/. [Accessed: 25- Jun- 2021].

[5] Database Management System Tutorial - Tutorialspoin,

Tutorialspoint.com, 2021. [Online]. Available:
https://www.tutorialspoint.com/dbms/index.htm.
[Accessed: 25- Jun- 2021].

[6] SQL - RDBMS Concepts - Tutorialspoint,
Tutorialspoint.com, 2021. [Online]. Available:
https://www.tutorialspoint.com/sql/sql-rdbms-
concepts.htm. [Accessed: 25- Jun- 2021].

[7] docker stats, Docker Documentation, 2021. [Online].

Available:
https://docs.docker.com/engine/reference/commandline/st
ats/. [Accessed: 25- Jun- 2021].

[8] F. Paraiso, S. Challita, Y. Al-Dhuraibi and P. Merle,

"Model-Driven Management of Docker Containers," 2016
IEEE 9th International Conference on Cloud Computing
(CLOUD), 2016, pp. 718-725, doi:
10.1109/CLOUD.2016.0100.

[9] J. Stubbs, W. Moreira and R. Dooley, "Distributed

Systems of Microservices Using Docker and Serfnode,"
2015 7th International Workshop on Science Gateways,
2015, pp. 34-39, doi: 10.1109/IWSG.2015.16.

[10] Peinl, R., Holzschuher, F. & Pfitzer, F. Docker Cluster

Management for the Cloud - Survey Results and Own
Solution. J Grid Computing 14, 265–282 (2016).
https://doi.org/10.1007/s10723-016-9366-y

[11] D. Liu and L. Zhao, "The research and implementation of

cloud computing platform based on docker," 2014 11th
International Computer Conference on Wavelet Actiev
Media Technology and Information
Processing(ICCWAMTIP), 2014, pp. 475-478, doi:
10.1109/ICCWAMTIP.2014.7073453.

[12] M. T. Chung, N. Quang-Hung, M. Nguyen and N. Thoai,

"Using Docker in high performance computing
applications," 2016 IEEE Sixth International Conference
on Communications and Electronics (ICCE), 2016, pp. 52-
57, doi: 10.1109/CCE.2016.7562612.

[13] M. G. Xavier, I. C. De Oliveira, F. D. Rossi, R. D. Dos

Passos, K. J. Matteussi and C. A. F. D. Rose, "A
Performance Isolation Analysis of Disk-Intensive
Workloads on Container-Based Clouds," 2015 23rd
Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, 2015, pp.
253-260, doi: 10.1109/PDP.2015.67.

[14] S. Thorpe, “Databases in containers - dzone,” dzone.com,

14-Jun-2018. [Online]. Available:
https://dzone.com/articles/databases-in-containers.
[Accessed: 05-Apr-2023].

[15] “Is it recommended to use database as a container in

production environment?,” Stack Overflow, 01-Nov-1964.
[Online]. Available:
https://stackoverflow.com/questions/48515460/is-it-
recommended-to-use-database-as-a-container-in-
production-environment. [Accessed: 05-Apr-2023].

[16] D. Damodaran B, S. Salim, and S. M. Vargese,

“Performance evaluation of mysql and mongodb
databases,” International Journal on Cybernetics &
Informatics, vol. 5, no. 2, pp. 387–394, 2016.

[17] Kithulwatta W.M.C.J.T., Jayasena K.P.N., Kumara B.T.G.S.,

Rathnayaka R.M.K.T. (2021), International Conference on Advances in
Computing and Technology (ICACT–2021) Faculty of Computing and
Technology (FCT), University of Kelaniya, Sri Lanka 7-12.

