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ABSTRACT Agriculture is one of the most influential sectors for human existence given the fact that all human beings depend on 
food for survival. Hence there is continuous research for efficiency and effectiveness improvements in agricultural activities to 
yield a quality harvest with increased volumes. Rapid advancements in technologies have paved the way for smart agriculture to 
improve the agricultural process. Thus, many smart artifacts have been introduced to the agriculture field including autonomous 
robots. As a result, the agricultural aspects such as soil management, seeding, harvesting and plant disease management have been 
focused highly with the aim of upheaving each of these agricultural sectors. Since none of these systems are integrated with 
cognitive capabilities, they cannot operate in an optimal manner by taking rational decisions as humans on contemporary issues 
related to agriculture.  Hence, these systems are less efficient and adaptive and become vulnerable in difficult conditions. Therefore, 
integration of cognition is vital to agricultural artifacts including robots and is a research challenge. A critical literature review has 
been carried out in this research to identify the existing limitations and challenges in smart agriculture and it was extensively 
discussed how cognition can be integrated in this regard. A hybrid cognitive architecture has been identified as a mechanism for 
integrating cognition into agricultural artifacts. Finally, the paper discusses several possible real-world applications with few case 
studies and provides insights for integrating cognition into agricultural artifacts. 

KEYWORDS: Artificial Intelligence, Artificial Cognition, Cognitive Architectures, Smart Agriculture.   

I. Introduction 

Cognitive computing is a widely discussed and researched 
topic in Artificial Intelligence (AI) which is inspired from 
human cognition [1]. Cognitive computing is considered as the 
ability of computers to imitate the complex human thought 
process [2]. The term cognition comes from the notion of 
human cognition where human cognition is defined as the 
capacity of people to employ their five senses, vision, sound, 
smell, taste, and touch and respond appropriately. Moreover, 
the ability of human beings for self-reliance, figuring things out 
for independent, adaptive, and anticipatory actions are referred 
to as cognition [3]. According to Britannica, ‘Cognition 
includes all conscious and unconscious processes by which 
knowledge is accumulated, such as perceiving, recognizing, 
conceiving, and reasoning’ [4]. Currently, the advancements in 
Artificial Intelligence have enhanced the aspects of embedding 
cognition into systems. Although there exist advanced tools, 
technologies, and theories in the field of computer science and 
artificial intelligence, there is a gap in embedding cognition 
into these artifacts [5]. 

The process of embedding human level cognition into hardware 
or software systems to obtain human level capabilities is 
referred to as artificial cognition. Cognitive neuroscience, and 
development psychology etc. are the fields that contribute to 

the field of artificial cognitive systems. Nevertheless, 
embedding human level cognition into systems artificially is a 
painstaking process since human cognition is also not yet fully 
understandable and there are currently no known techniques 
that can fully embed cognition into systems [6]. Furthermore, 
human level thinking is not achievable yet via a system 
although human knowledge can be embedded to a greater 
extent. Hence it is evident that human cognitive tasks are not 
fully achievable up to now and extensive research is being 
carried out [7] [8] at present as this would be one of the greatest 
achievements in AI, if achieved. Furthermore, psychological 
science and AI fields mutually benefit each other as the studies 
related to these two fields invent and uncover new theories [9]. 
Artificial cognition has headed its way towards many industries 
and agriculture is one such prominent domain that is being 
investigated. 

As all living creatures completely depend on food for survival, 
improving the agricultural sector is one of the utmost priorities 
in the world. In the past, all agricultural activities were done 
with manual systems based on the experiences of farmers. 
Throughout human history, significant advances have been 
made to boost agricultural productivity with fewer resources 
and labor demands. With the rapid improvements in the 
technology some of these manual systems were automated and 
AI has been integrated [10] to boost the productivity and 
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efficiency, in selected narrow segments in agriculture. In 
addition, for some countries agriculture is one of the main 
revenues generating sectors thus pushing the boundaries to 
adopt more and smarter agricultural systems to achieve 
excellence.  

Some of the automated systems/robots employed in the 
agriculture sector can operate autonomously in pre-defined 
contexts. Yet none of these are integrated with cognitive 
abilities to achieve human level expertise [11]. Among the 
various AI and cognitive aspects that are being examined for 
integration in smart agriculture cognitive ergonomics is one 
such. Improved work efficiency, reduced human error, and 
strengthening the knowledge available in how humans process 
information are some significant aspects of cognitive 
ergonomics that relates to smart agriculture [11].  

With the identified importance of integrating cognitive aspects 
to smart agricultural artifacts, this research is aimed to provide 
a critical analysis on how the agricultural aspects have been 
influenced with the concept of smart agriculture, the challenges 
faced in adopting smart agriculture, and methods of integrating 
artificial cognitive systems in smart agriculture.   

To achieve this, a systematic literature review was conducted 
based on the following three research questions.  

RQ1: How has the agriculture field been affected by the 
concept of smart agriculture? 

 
RQ2: What are the challenges faced by the smart agricultural 

paradigm? 
 
RQ3: How artificial cognitive systems can be integrated into 

smart agriculture for further enhancements? 

The rest of the paper is structured as follows. Section 2 
describes the methodology of the research while section 3 
briefly discusses different aspects in agriculture that utilize 
smart techniques. The section 4 discusses the challenges to the 
concept of smart agriculture while section 5 includes few 
scenarios where cognition can be embedded artificially to smart 
agricultural systems. Final section discusses the overall 
approach taken in the paper and concludes with research 
findings. 

   
II. Methodology 

To identify the existing landscape of smart agriculture a 
thorough literature review was conducted. In doing so the 
objectives of this research have been formulated as research 
questions and were stated in the Introduction section.  

This work applied a Systematic Literature Review (SLR) in 
answering the formulated research questions. Searching for 
literature was done using multiple databases such as 
IEEEXplore, Google Scholar, Science Direct and Web of 

Science. The keywords used in searching for literature in the 
above databases are “Smart Agriculture”, “Artificial cognition" 
AND “Agriculture”, “Cognition" AND “Agriculture”, 
“Artificial cognition" AND “Smart agriculture”, “Smart 
Agriculture” AND “Challenges'', “Artificial Cognition” AND 
“Agriculture” AND “Challenges”. The resulted literature was 
further filtered based on the inclusion criteria of research being 
published after 2015, ensuring latest research work. For further 
filtering, literature that relates to the research questions of this 
research, title, abstracts and keywords of the publications were 
screened. The above stated systematic approach resulted in 47 
publications that identified as most suitable publications for the 
literature review to be conducted in this research. 

Then as the next step, 3 Quality Assessment Criteria (QAC) 
were considered to evaluate the quality of the selected 47 
publications. The QAC were scored from the range of 0 to 1. 
 
QAC1: Has the study employed the established standards in   

conducting the research? 
 
QAC2: Has the study performed a literature review pertaining 

to contemporary research and taken insights from them? 
 
QAC3: Has the work been published in a refereed international 

journal or in an international conference? 
 
The above 3 QAC were fulfilled with the maximum total score 
of 3 by all the 47 publications and therefore, can be proved as 
suitable for the literature review work conducted in this 
research. 

Then, the data from those 47 publications were extracted and 
interpreted in the rest of the sections of the paper. Finally, few 
case studies were considered and some recommendations were 
given for future research work. 

 
III. Related work 

This section comprehensively discusses the landscape of 
smart systems in soil management, seeding, harvesting, and in 
plant diseases. 

A. Soil Management 

Soil is the crucial ingredient of agricultural operations since 
most agricultural crops are grown in soil hence agriculture and 
soil are inseparable. Nevertheless, due to the growth in world's 
population and increased urbanization and industrialization the 
agricultural land areas are shrinking [12]. Crop production 
needs to be improved and soil resources need to be conserved 
with a thorough understanding of diverse soil types and 
conditions. Therefore, soil testing is critical in modern 
agriculture to optimize productivity and protect the 
environment from overuse of fertilizers [13]. A six wheeled soil 
sampling mobile robot has been developed, to increase the 
efficiency and productivity in agriculture [13].  
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The information of soil fertilization has also been a concern of 
many researchers in the field of smart agriculture. An Internet 
of Things (IoT) sensor integrated smart system has been 
developed in [14] for collecting information on soil and use of 
fertilizer in agricultural fields. A four-wheeled agricultural 
robot has been implemented to collect information about soil 
and crop in open fields in [15]. This robot utilizes a touch 
screen for the generation of control commands and the mobility 
of the robot is achieved using six motors. Nevertheless, the 
researchers have not specifically stated a procedure for the 
collection of soil or crop information.  

Augmented Reality (AR) concept too has been integrated into 
soil sampling for efficiency and effectiveness. Wearable AR 
technology has been used to direct users to identify soil 
sampling spots for data collection [16]. This research employs 
an algorithm to automatically decide the locations for soil 
sample collection based on a soil map built from drone 
photography after ploughing. This is a major step in the field 
of smart agriculture where the AR concept is being utilized for 
the traditional farming process. Soil salinity also has adverse 
effects on the degradation of soil that inhibits the sustainable 
development of the irrigated farmlands. The research work in 
[17] utilizes satellite remote sensing along with soil sampling 
for predicting the salinity of soil with the use of machine 
learning techniques. Further the research in [17] can identify 
the desired salinity level of soil based on the vegetation that 
suits best for the crops. 

Soil monitoring systems need to be capable of responding 
quickly to adverse circumstances, such as extreme weather or 
chronic drought, based on soil conditions. An autonomous soil 
monitoring robot has been implemented in [18] that collects 
data on soil moisture and temperature at specified points in the 
field. Nevertheless, the autonomous robot is not able to act on 
collected information of soil, whereas the collected data from 
the field must be forwarded to the farm manager for 
investigation. The research work in [19] concerns controlling 
the soil condition using the ESP-NOW protocol that works in 
real time to monitor the humidity of soil as well as the 
temperature and humidity of the air. This autonomous robot can 
both monitor the soil condition and act accordingly to water the 
crops. The protocol utilized in this autonomous robot allows 
the operation without connecting to Wi-Fi. The autonomous 
robot developed in [20] can move to any specific location 
within the field and water the plants without any human 
intervention, according to a specified schedule to retain the 
moisture of the soil in the field. RoSS, is a robot that can 
penetrate the soil to send a sensor probe to detect the moisture 
level of soil [21]. It is a low-cost robot that analyses the soil 
health based on the collected samples and sends the data to a 
cloud for storage thus eliminating the human dependency in 
soil sampling. Further works of this research includes 
integration of a GPS, camera, and a LIDAR unit. 
The standard approaches to generating agricultural suggestions 
such as seed spreading, watering, fertilizing, etc. can be 
enhanced by sensors. For example, complex laboratory 
experiments of soil testing can be overcome by integrating IoT 

sensors to monitor soil conditions. Thus, more efficient 
equipment can be developed using sensors for strategic on-farm 
testing [22]. The use of an EM38 sensor that employs 
electromagnetic induction in characterizing the soil samples 
has been widely used in research related to agriculture. The 
research in [23] provides further insights into the applicability 
of the EM38 sensor in agricultural fields due to its ability in 
evaluating soil parameters and identifying the locations for soil 
sampling. According to the research [23], the EM38 sensor can 
be used to assess the soil salinity, water level, soil types along 
with boundaries, nutrients, N-turnover etc. that assures the 
widespread usage of this sensor in agricultural fields. 
Therefore, it is clearly evident that this type of sensor is much 
valuable in the agricultural field to have a broader view on the 
soil being concerned. 

Autonomous fertilizing is another aspect considered in the field 
of smart agriculture. The robot developed in the research work 
in [24] can fertilize the soil autonomously and this system is 
more efficient and effective because it can be used in gardens, 
agricultural, and horticultural fields as well. The robot named 
‘Agrobot Lala’ is one of the latest developments in smart 
agriculture [25]. This robot can perform real time soil sampling 
and can analyse the amount of nitrate in the soil. Satellite 
images along with machine learning algorithms are used in this 
research for partitioning the target agricultural fields into 
representative regions where the robot is capable of 
automatically sampling soil at the relevant regions. Therefore, 
it reduces the number of samples collected and optimizes the 
location of the soil samples that makes this research unique. 

B. Seeding 

Seed spreading is also an integral part of crop management 
where the farmer engagement is extensive if the agricultural 
area is large. The primary goal of automating the seeding 
process is to make it more efficient and precise than traditional 
seed sowing methods. Therefore, many researchers have 
worked on seed spreading robots that upheaves the smart 
agriculture concept. A seed spreading robot has been designed 
to perform seeding on a predefined fixed distance in the 
agricultural field [26]. Authors have indicated embedding 
intelligence to pick weeds as future work.   

An Agribot has been designed for the seeding process with the 
use of precision agriculture concept where each crop is treated 
independently [27]. Furthermore, the researchers have utilized 
the concept of optimal depth and distance in the seeding task. 
This Agribot can navigate easily in more compact areas using 
IR sensors, which is an advantage over the existing agricultural 
robots. Nevertheless, one of the main constraints of this 
agricultural robot is the limited coverage area that it can 
navigate due to its reliance on a DC battery. As further work, 
the researchers have stated the requirement of integrating 
weeding and spraying activities to make the robot usable in 
multiple scenarios. The work carried out in [28] addresses the 
limitations in existing seeding robots and highlights some of 
the constraints that exist in real agricultural fields. This seeding 
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agricultural robot incorporates a seed selector in the seeding 
process with multiple other features such as keeping track of 
the lanes, automatically following the path, and establishing 
wireless communication with the owner in an emergency etc. 
In addition, the robot is designed with DC components and is 
battery operated. As future work researchers have indicated the 
use of solar panels where there are electricity issues. 

A four-wheel robot has been developed in [29] which can carry 
out the seeding process in similar intervals based on the 
parameters given. Some of the inputs are length and breadth of 
the agricultural land where the seeding is to be performed, and 
the seed spacing intervals. This robot has been able to increase 
the number of seeding locations and to reduce the seed wastage. 
As further works, it is being indicated the possibility of 
integrating IOT based equipment and sophisticated 
components for wheels and sensors to ensure the operation of 
the robot in harsh environmental conditions, and to integrate 
other agricultural tasks to the same robot.  

In the recent past much focus has been paid to developing robot 
communities that work towards a common goal. Mobile 
Agricultural Robot Swarms (MARS) is the paradigm of smart 
agriculture that explores the possibility of using multiple robots 
that perform individual tasks delegated and coordinated by a 
central robot system that are working towards achieving a 
single goal [30]. These robot swarms use minimum sensor 
technology to obtain a lower cost and efficiency in terms of 
energy consumption that provides reliability and scalability.  
For the seeding process, a MARS system has been used in [30], 
which is a novel step towards smart agriculture.  

The Agribot [31] makes use of both the sensor and vision 
technologies in the seeding process for achieving the 
navigation and localization tasks. The robot’s position is 
identified by a Global Positioning System (GPS) with an on-
board vision mechanism. In addition, this robot consists of a 
suspension mechanism to prevent the robot from toppling 
while navigating in agricultural fields that makes this research 
stand out from other research work. According to the authors, 
this suspension system can handle bumps up to 3cm. Moreover, 
the researchers propose to use the swarm technology to reduce 
the sowing time. 

C. Harvesting 

Crop production is confronted with enormous difficulties 
mainly due to reasons such as diseases, low yield, damage from 
animals and natural disasters etc. Therefore, to ensure the 
security of food and ecosystem, future crops must be developed 
for sustainable agriculture by boosting net production while 
minimizing negative environmental impacts. In the research 
[32] drones were used for distinguishing between different 
techniques used for ploughing in fields with the use of an RGB-
D sensor. Generally, image acquisition, analysis and reasoning 
in smart agriculture is a tedious, time-consuming work in large 
agricultural farms. Therefore, use of new sensors has been 
indicated as further work in [32] to achieve high resolution. 

Identification of crop rows is also an essential task for almost 
all the activities in the agricultural sector. Both the tasks of crop 
row identification and navigation between the crop rows have 
been achieved successfully with the use of a clustering 
algorithm in the mobile robot [33].  

Crop harvesting robots are also gaining much attention in mass 
scale agriculture. With the use of NI RoboRIO controller, a 
harvesting robot has been implemented targeting small and 
medium sized low hanging crops [34].  Since the fields are not 
even, image acquisition without the background is a challenge. 
The robot developed in [35] for image acquisition can be 
configured remotely and provide scalable solutions to 
minimize the challenges encountered in using traditional image 
gathering techniques with the use of cloud computing and 
wireless network technology. Harvey [36] is a robotic harvester 
that aims on harvesting sweet pepper, based on vision 
algorithms. The results demonstrate that better grasping 
techniques lead to significantly better harvesting. 

The development of an agricultural humanoid robot based on 
natural human harvesting behavior has been the goal of the 
research in [37]. The humanoid robot utilizes a vision-based 
approach with two RGB-D sensors fixed in the head and the 
hand. The humanoid robot consists of grippers to achieve the 
natural human grasping in harvesting and the system has been 
deployed successfully in tomato agricultural fields. A robot 
integrated with a sac with constant air pressure for grasping the 
fruit is deployed in tomato harvesting and shows much higher 
success rate and can prevent the fruit being damaged [38]. A 
rotational plucking gripper has been utilized in the research 
[39] to efficiently pluck tomato that makes the gripper rotate 
using an infinity rotational joint. An apple harvesting robot 
implemented by the researchers in [40] can perform real-time 
apple detection and picking up the apples with a success rate of 
0.8. 

In the recent past it has been researched to use the same 
harvesting robot in multiple cultivation fields, mainly due to 
economic reasons. A novel low-cost gripper [41] has been 
developed using a 3D sensor for harvesting fruits and 
vegetables. The gripper can detect the cutting point of the fruit 
or the vegetable without affecting the flesh that makes this a 
viable approach in agricultural fields. 

Integrating smart agriculture into paddy cultivation is a 
challenge as there is no shape or a fixed position for the paddy 
harvest (Vee Karala) to capture an image in a simple manner. 
Rice harvesting has been the concern of the study [42] and it 
has developed an automated procedure to account for each step 
in the harvesting process. This includes steps such as 
loading/unloading and restarting the robot to harvest the rest 
after a small break where the robot has the capability to 
cooperate with the farmers in the harvesting process. Therefore, 
it is apparent that the process of harvesting rice involves a 
complex process that must be focused on many angles.  
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Other than wide agricultural lands, the concern has also shifted 
towards small agricultural areas where the environment is 
cluttered and unstructured. A robot [43] has been developed to 
harvest strawberries in a polytunnel that includes some 
complex processes due to the environmental constraints. This 
robot can successfully pick strawberries from clusters of 
strawberries which makes this research stand out from other 
strawberry picking systems. The algorithm named ‘obstacle-
separation path planning’ has been introduced in this research 
where the robot uses a gripper to push away any exterior 
obstacles to reach the goal to be picked up. In another research 
a robot [44] has been developed for harvesting strawberries in 
a greenhouse where it was stated that the average picking time 
of a strawberry is about only 4 seconds. This fully autonomous 
robot can detect ripe fruits, pick them up and place the fruits in 
a box without any damage. According to the researchers, this 
is a cost-effective complete solution for the scarcity of 
expensive human pickers. 

In addition to the vegetables and fruits to be harvested, some 
researchers have focused on the greenhouse horticultural 
domain as well. A mobile robot has been designed in [45] to 
support harvesting flowers inside a greenhouse. The developed 
robot can follow a person by 3D mapping and assist in 
harvesting flowers and has been tested in a real greenhouse. 

D. Plant Diseases 

Plant diseases pose a serious threat to the agricultural process. 
As a result, it is critical for farmers to adequately deal with 
diseases and monitor them using prompt prevention methods. 
Crop diseases have been generally divided into two categories: 
abiotic (also known as non-infectious) and biotic (also known 
as infectious) [46]. Plant production and the minimization of 
both qualitative and quantitative losses in crop productivity 
depend on the early and effective diagnosis and identification 
of plant diseases. Optical techniques have proven effective 
results in plant disease detection in early stages. Among the 
optical techniques that are being used, RGB imaging, 
thermography, 3D scanning, etc. are more prominent [47]. 
Nevertheless, according to study [48], detecting plant diseases 
continues to be a challenging issue for both biotic and abiotic 
categories. This study also brings out the fact that although 
there are many successful attempts in detecting plant diseases, 
most of them require a controlled environment for the 
acquisition of data to prevent false positives. In addition, the 
advancements in mechatronics and robotic systems for plant 
disease management should be driven by the challenge that 
diagnostic specificity poses for microorganism control. 
A plant health monitoring system with an 83% accuracy level 
was implemented in [49] for early detection of plant health 
based on images of the crop. This system enables early 
detection of malnutrition conditions and classifies the plants as 
healthy or unhealthy and the system can sprinkle pesticides 
accordingly. A robot operated with a mobile phone has been 
developed by the researchers in [50] for the purpose of spraying 
pesticides. This system comprises three units, namely, input, 
spray and control processing, and output. Nevertheless, this 

system is not fully autonomous since the farmer needs to 
manually operate the robot functions, movements, spraying, 
and stop spraying functions with the use of the mobile 
interface. The autonomous robot that has been implemented by 
[51] is capable of autonomously spraying pesticides and is 
based on image processing for detecting plant disease. The 
work done in [52] is much like the previous work, however the 
concern was only towards leaf disease detection. 

The leaf disease detecting robot developed in [53] is voice 
controllable and can alert the user with the measures that can 
be taken to address the identified disease. Another approach 
taken by researchers in preventing plant diseases is removing 
the unwanted part of the plant once the disease is detected. The 
research work [54] focuses on the automatic detection of the 
plant diseases and can cut the stem where the leaves are 
affected and has reported an accuracy level of 79%. Deep 
learning techniques have been applied for building models to 
detect plant diseases in [55].   

Furthermore, the concern on plant disease detection has also 
directed towards handling multiple issues of a single plant 
giving an all-in-one solution. The research [56] attempts to 
address the issue of automated identification and classification 
of diseases in the rice plant using machine learning and image 
processing approaches. Nevertheless, it has been indicated in 
the study that with the passage of time, plant diseases get more 
severe and to understand the parameters that affect the 
detection of plant diseases at a maturity level needs more in-
depth research. Durmus et.al, 2017 have integrated the ability 
of tomato plant leaf disease detection to a robot which already 
had the capability of navigating, controlling, and collecting 
data [57]. The authors have utilized two deep learning 
architectures namely, AlexNet and SqueezeNet in PlantVillage 
dataset of tomato leaf images. As further work, it was indicated 
to improve the system to extract leaves from complex 
backgrounds. 

All the above discussed methods and technologies in smart 
agriculture have mainly focused on automating a very specific 
task. Yet, none of those methods and techniques are capable 
enough of embedding general cognition into any of these 
systems. For example, none of the robots/systems described 
earlier can adapt to changing situations such as in the absence 
of a particular nutrient substituting it with a local similar 
nutrient. In addition, none of the agricultural robots at existing 
present can perform all the agricultural tasks on their own 
without any human intervention. 

 
IV. Challenges to smart agriculture 

This section discusses the challenges and limitations in smart 
agriculture in a more concise manner. The developments in 
Artificial Intelligence and related fields have enabled farmers 
to adopt autonomous farming technology and make use of 
predictions based on past and current conditions. All these 
strategies make use of numerous hardware components that 
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require connectivity and electricity to operate. The challenges 
to the concept of smart agriculture have been the focus of many 
researchers [58], [59]. Figure 1 illustrates the challenges 
identified, to smart agriculture based on the literature reviewed 
in this research. 
 

 

 
Figure 1. Challenges to Smart Agriculture 

 
When the extent of the farming area is large, continuous 
operation of these robots only with battery power is a challenge 
due to high power consumption. Therefore, it is essential to 
either reduce the power usage or to improve the battery life for 
continuous, uninterrupted usage by these machines. Hence 
there are some ongoing research works that investigate the 
possibility of integrating solar power and wireless sensors to 
increase the lifetime. Nevertheless, there are some challenges 
such as exposure to solar energy, efficiency of the solar panel 
conversion etc. With the expansion of the cultivation fields the 
scalability of existing systems is a major concern without re-
engineering the whole process. 

Autonomous systems in smart agriculture tend to face 
numerous hardware related difficulties when in operation due 
tough climatic conditions such as exposure to bad weather, 
traversing uneven terrain, deliberate attacks, and harm from 
animals, etc. Still there are no fully integrated systems that can 
mitigate all these limitations.  

Additionally, these autonomous systems face various 
networking related issues especially in connecting IoT devices 
dispersed in agricultural fields including device malfunctions 
as well. The quality and reliability of real time data transmitted 
by the IoT devices become questionable due to these network 
related issues. The infrastructure in autonomous systems in 
agricultural fields are highly complex and, in rural areas, in 
most countries, the network communications are very slow or 
not present at all. This hampers the continuous real time data 
streaming and accessing essential knowledge for farming.  

Nevertheless, it is understood that most of the farmers are 
lacking the essential knowledge to operate in the wake of smart 
agriculture. Hence there needs to be carefully designed 
knowledge dissemination events to equip the farmers and 
update their knowledge. Data security and maintaining 

integrity of specific business processes are also crucial while 
implementing such systems. 

Furthermore, none of the present smart agricultural systems are 
integrated with cognition where these systems can evaluate the 
current internal and external conditions and reason out, adapt 
to changing situations and take informed decisions over 
anticipated situations. Adaption of proper cognitive 
architectures in smart agriculture is yet a research challenge. In 
addition to the above limitations the knowledge gap in 
identifying and modelling of human level cognition is a 
challenging task that limits embedding of cognition into these 
smart agricultural systems. Other than the challenges identified 
with the literature review conducted, authors would like to add 
cultural aspects also to the list of challenges to the smart 
agricultural paradigm. Still farmers in some rural areas in some 
parts of the world are using traditional approaches combined 
with non-scientific belief systems for farming and some are 
very reluctant to embrace the change. This has posed a barrier 
to the usage of smart agricultural systems in day to day 
agricultural activities. 

 
V. Integrating artificial cognition into smart 

agriculture 

A. Real –world scenarios 

The real-world examples given next, discusses how cognition 
can be integrated in smart agriculture. None of the soil sample 
collecting robots can decide whether the designated place is the 
most suitable place for collecting the sample. For example, if 
the designated place is trampled and damaged by wild animals, 
then that soil could be contaminated with animal waste. By 
integrating cognition through common sense knowledge and 
the ability of context-based reasoning mechanisms these 
systems will be able to avoid such places that will enable 
avoiding making erroneous decisions. When sprinkling water 
if the system can identify the weather condition and decides 
whether watering is required or not is a step forward in smart 
agriculture. Additionally, if the system noted that the plants or 
crops do not look healthy and if the system can decide the next 
set of steps such as watering or watering with added nutrients 
will yield better harvest. The process of autonomous fertilizing 
can also be uplifted if the soil fertility can be predicted and 
fertilized accordingly. Another agricultural process that can be 
embedded with cognition is the cultivation phase where the 
robot can be made to identify the relevant places in the 
agricultural field to cultivate or a particular plant type in the 
seeding process. Spraying pesticides can be stated as an 
agricultural activity where farmers tend to be more careful, and 
therefore, the full control has not been given to the agricultural 
robots yet.  

In Sri Lankan context, tea, rubber, and coconut are the 
plantations that are widely of concern. Deploying smart 
agricultural systems integrated with artificial cognition will 
elevate these agricultural sectors into the next level that could 
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bring much needed foreign exchange. All these three sectors 
are facing a severe scarcity in finding capable human labor.  

Developing autonomous cognitive systems for tea leaves 
plucking will be an extreme research challenge because of 
ground conditions and the difficulty of identifying the rightly 
matured tea leaves for plucking. Any autonomous cognitive 
system developed for the tea agricultural sector will not be only 
a research achievement but will be a sustainable support for the 
industry. Rubber agricultural sector is faced with a dearth of 
skilled workers for rubber tapping. Autonomous cognitive 
rubber tapping machines are a requirement of the hour which 
is not fulfilled yet. The autonomous rubber tapping machines 
should be capable of identifying the suitable rubber trees and 
their height for tapping. Navigating among the trees and 
identification of weather conditions and acting accordingly are 
two aspects that need to be considered. Coconut agricultural 
sector too is another area hardly hit due to scarcity of skilled 
workers. Autonomous cognitive coconut plucking machines 
will be an ideal solution to the problem, which is not yet 
realized. The ability of the machine to identify the matured 
coconut for plucking, monitoring the healthiness of the tree top 
and identification and treating for any insects or diseases that 
might be at the top of the tree are few cognitive aspects that 
need to be considered.  

Irrespective of the agricultural sector any autonomous 
cognitive machine deployed in the agricultural fields needs to 
be able to assess the environmental conditions, healthiness of 
the plants and requirement of fertilizer and nutrients and take 
decisions accordingly.    

B.  Cognitive Architectures in Smart Agriculture 

Artificial cognitive systems are embedded with the ability of 
learning, reasoning, and anticipation as fundamental 
capabilities. Thus, these capabilities can be harnessed into 
smart agriculture for developing cognitively able autonomous 
systems. Furthermore, farmers will be able to deploy 
autonomous farming technology and make better predictions of 
the future, based on current and past conditions, reducing crop 
diseases and pest invasions, by harnessing the power of 
Artificial Intelligence.  

Identifying the correct architecture to integrate cognition is a 
much-researched area at present. Cognitivist architecture and 
Emergent architecture are two possible architectures that can 
be used for developing cognitive systems for smart agriculture. 
A cognitivist architecture supports embedding of static 
knowledge to the system where the system/robot will work 
according to the predefined knowledge. Emergent architecture 
concerns on learning by experience with the interactions with 
the environment. The system learns and builds its own 
knowledge repository. Thus, it is proposed here to use a hybrid 
cognitive architecture that combines cognitivist and emergent 
architectures in building autonomous cognitive systems for 
smart agriculture.  

The hybrid architecture will be a good approach for smart 
agriculture as it allows the leverage to utilize the inherent and 
integrated knowledge while accounting for emerging 
situations. Thus, the system will be able to utilize the explicit 
knowledge provided to the system and will be able to adjust 
according to the inputs taken from the environment. This 
approach facilitates integrating the basic knowledge of farmers 
as well as the knowledge that is being gathered by them through 
experience.   

 
VI. Discussion and conclusion 

Through this research, it was identified that the concept of 
smart agriculture is strongly based on automating the routine 
steps of agriculture to enhance efficiency and effectiveness. 
Integration of AI and IoT have further improved and 
accelerated the adaptation. Yet it was noted that no cognitive 
abilities are integrated to any of these systems to a significant 
extent. This was clear based on the literature review done with 
respect to soil management, seeding, harvesting, and plant 
diseases. Therefore, it can be stated that although there are 
partially/fully automated systems in the smart agricultural 
paradigm, cognitively able systems are scarcely noted in the 
agricultural process. In addition, embedding cognition 
completely into a system is a very complex process because 
there is a knowledge gap in fully understanding how the human 
cognition process works. Additionally, techniques and tools are 
also not yet fully known and readily available. In addition, there 
exists a wide range of challenges to the concept of smart 
agriculture where the authors have broadly discussed those 
challenges previously. Furthermore, to achieve the right level 
of cognition, it is required to integrate the proper cognitive 
architecture into systems that are deployed in smart agriculture. 
Hence, a hybrid architecture is proposed which is a 
combination of the cognitivist and emergent architectures. Yet 
this poses a great challenge since complete knowledge on how 
human cognition gained and works is not completely 
understood at present. Nevertheless, the authors highly urge the 
need of concerning actual requirements when developing fully 
autonomous cognitive systems since identifying the real need 
of farmers will drive the implemented system to a success. 
Moreover, the research gap in how humans process information 
with the use of their conscious mental processes and the 
knowledge in embedding cognition artificially to systems is a 
research challenge at present. Nevertheless, research in both 
cognitive computing and smart agriculture will further enhance 
the cognitive facet of smart agriculture in future. 

REFERENCES 

[1]   G. Wang, "DGCC: A Case for Integration of Brain 
Cognition and Intelligence Computation," 2018 IEEE 
International Conference on Data Mining Workshops 
(ICDMW), 2018, pp. 478-479, doi: 
10.1109/ICDMW.2018.00076. 

 
[2]   W. K. Chen, Linear Networks and Systems. Belmont, 

CA, USA: Wadsworth, 1993, pp. 123–135. 



                                                                                                                             

18 
 

 
[3]   V. Dharmaraj and C. Vijayanand, "Artificial 

Intelligence (AI) in Agriculture", International 
Journal of Current Microbiology and Applied 
Sciences, vol. 7, no. 12, pp. 2122-2128, 2018. 
Available: 10.20546/ijcmas.2018.712.241. 

 
[4] "cognition | Definition, Psychology, Examples, & 

Facts", Encyclopedia Britannica, 2022. [Online]. 
Available: https://www.britannica.com/topic/cognition-
thought-process. 

 
[5]   L. Wang and Y. Xia, "Artificial Intelligence Brain," 2021 

International Conference on Computer Engineering and 
Artificial Intelligence (ICCEAI), 2021, pp. 266-270, doi: 
10.1109/ICCEAI52939.2021.00053. 

 
[6]  T. A. Gamage, E. M. N. M. Ekanayake, R. M. N. M. 

Rajapaksha, M. T. D. Mackonal and D. D. M. 
Ranasinghe, “Integrating Artificial Cognitive Systems in 
Smart Agriculture,” 15th International Research 
Conference of General Sir John Kotelawala Defence 
University, 2022, pp. 89-94. 

 
[7] E. Zouganeli and A. Lentzas, “Cognitive robotics - towards 

the development of next-generation robotics and 
intelligent systems,” Communications in Computer and 
Information Science, pp. 16–25, 2022. doi:10.1007/978-
3-031-17030-0_2. 

 
[8]   A. Kargin, S. Panchenko, A. Vasiljevs, and T. Petrenko, 

“Implementation of cognitive perception functions in 
fuzzy situational control model,” Procedia Computer 
Science, vol. 149, pp. 231–238, 2019. 
doi:10.1016/j.procs.2019.01.128. 

 
[9]  S. Ruhela, "Thematic Correlation of Human Cognition and 

Artificial Intelligence," 2019 Amity International 
Conference on Artificial Intelligence (AICAI), 2019, pp. 
367-370, doi: 10.1109/AICAI.2019.8701337. 

 
[10] Y. Awasthi, "Press “A” for Artificial Intelligence in 

Agriculture: A Review", JOIV: International Journal on 
Informatics Visualization, vol. 4, no. 3, 2020. Available: 
10.30630/joiv.4.3.387 [Accessed 18 September 2022]. 

[11] J. Vasconez, G. Kantor and F. Auat Cheein, "Human–
robot interaction in agriculture: A survey and current 
challenges", Biosystems Engineering, vol. 179, pp. 35-
48, 2019. Available: 
10.1016/j.biosystemseng.2018.12.005. 

 
[12] M. A. Cullu, M. Teke, N. Mutlu, U. Türker, A. V. Bilgili 

and F. Bozgeyik, "Integration and Importance of Soil 
Mapping Results in The Precision Agriculture," 2019 8th 
International Conference on Agro-Geoinformatics (Agro-
Geoinformatics), 2019, pp. 1-4, doi: 10.1109/Agro-
Geoinformatics.2019.8820527. 

 
[13] A. Łukowska, P. Tomaszuk, K. Dzierżek and Ł. 

Magnuszewski, "Soil sampling mobile platform for 
Agriculture 4.0," 2019 20th International Carpathian 
Control Conference (ICCC), 2019, pp. 1-4, doi: 

10.1109/CarpathianCC.2019.8765937. 
 
[14] R. Maheswari, H. Azath, P. Sharmila and S. Sheeba Rani 

Gnanamalar, "Smart Village: Solar Based Smart 
Agriculture with IoT Enabled for Climatic Change and 
Fertilization of Soil," 2019 IEEE 5th International 
Conference on Mechatronics System and Robots 
(ICMSR), 2019, pp. 102-105, doi: 
10.1109/ICMSR.2019.8835454. 

 
[15] Z. Fan, Q. Qiu and Z. Meng, "Implementation of a four-

wheel drive agricultural mobile robot for crop/soil 
information collection on the open field," 2017 32nd 
Youth Academic Annual Conference of Chinese 
Association of Automation (YAC), 2017, pp. 408-412, 
doi: 10.1109/YAC.2017.7967443. 

 
[16] J. Huuskonen and T. Oksanen, "Soil sampling with drones 

and augmented reality in precision 
agriculture", Computers and Electronics in Agriculture, 
vol. 154, pp. 25-35, 2018. Available: 
10.1016/j.compag.2018.08.039. 

 
[17] H. Shi et al., "A Global Meta-Analysis of Soil Salinity 

Prediction Integrating Satellite Remote Sensing, Soil 
Sampling, and Machine Learning," in IEEE Transactions 
on Geoscience and Remote Sensing, vol. 60, pp. 1-15, 
2022, Art no. 4505815, doi: 
10.1109/TGRS.2021.3109819. 

 
[18] P. M. Piper, J. S. Vogel, M. T. Fahrenkrug, S. J. 

McNamee, Q. N. Pham and G. C. Lewin, "Designing an 
autonomous soil monitoring robot," 2015 Systems and 
Information Engineering Design Symposium, 2015, pp. 
137-141, doi: 10.1109/SIEDS.2015.7116962. 

 
[19] R. Rizal Isnanto, Y. Eko Windarto, J. Imago Dei 

Gloriawan and F. Noerdiyan Cesara, "Design of a Robot 
to Control Agricultural Soil Conditions using ESP-NOW 
Protocol," 2020 Fifth International Conference on 
Informatics and Computing (ICIC), 2020, pp. 1-6, doi: 
10.1109/ICIC50835.2020.9288575. 

 
[20] N. Putu Devira Ayu Martini, N. Tamami and A. Husein 

Alasiry, "Design and Development of Automatic Plant 
Robots with Scheduling System," 2020 International 
Electronics Symposium (IES), 2020, pp. 302-307, doi: 
10.1109/IES50839.2020.9231850. 

 
[21] D. Bourgeois, A. G. Bourgeois and A. Ashok, "Demo: 

RoSS: A Low-Cost Portable Mobile Robot for Soil Health 
Sensing," 2022 14th International Conference on 
COMmunication Systems & NETworkS (COMSNETS), 
2022, pp. 436-437, doi: 
10.1109/COMSNETS53615.2022.9668355. 

 
[22] R. Viscarra Rossel and J. Bouma, "Soil sensing: A new 

paradigm for agriculture", Agricultural Systems, vol. 148, 



                                                                                                                             

19 
 

pp. 71-74, 2016. Available: 10.1016/j.agsy.2016.07.001. 
[23] K. Heil and U. Schmidhalter, "The Application of EM38: 

Determination of Soil Parameters, Selection of Soil 
Sampling Points and Use in Agriculture and 
Archaeology", Sensors, vol. 17, no. 11, p. 2540, 2017. 
Available: 10.3390/s17112540. 

 
[24] M. Arivalagan, M. Lavanya, A. Manonmani, S. 

Sivasubramanian and P. H. Princye, "Agricultural Robot 
for Automized Fertilizing and Vigilance for Crops," 2020 
IEEE International Conference on Advances and 
Developments in Electrical and Electronics Engineering 
(ICADEE), 2020, pp. 1-3, doi: 
10.1109/ICADEE51157.2020.9368908. 

 
[25] G. Kitić, D. Krklješ, M. Panić, C. Petes, S. Birgermajer 

and V. Crnojević, "Agrobot Lala—An Autonomous 
Robotic System for Real-Time, In-Field Soil Sampling, 
and Analysis of Nitrates", Sensors, vol. 22, no. 11, p. 
4207, 2022. Available: 10.3390/s22114207. 

 
[26] B. Arthaya, C. F. Naa and R. St, "Preliminary Design of 

Seed Spreading Robot as An Educational Mechatronic 
Project," 2019 International Conference on Mechatronics, 
Robotics and Systems Engineering (MoRSE), 2019, pp. 
64-68, doi: 10.1109/MoRSE48060.2019.8998737. 

 
[27] N. S. Naik, V. V. Shete and S. R. Danve, "Precision 

agriculture robot for seeding function," 2016 International 
Conference on Inventive Computation Technologies 
(ICICT), 2016, pp. 1-3, doi: 
10.1109/INVENTIVE.2016.7824880. 

 
[28] M. U. Hassan, M. Ullah and J. Iqbal, "Towards autonomy 

in agriculture: Design and prototyping of a robotic vehicle 
with seed selector," 2016 2nd International Conference on 
Robotics and Artificial Intelligence (ICRAI), 2016, pp. 
37-44, doi: 10.1109/ICRAI.2016.7791225. 

 
[29] P. V. S. Jayakrishna, M. S. Reddy, N. J. Sai, N. Susheel 

and K. P. Peeyush, "Autonomous Seed Sowing 
Agricultural Robot," 2018 International Conference on 
Advances in Computing, Communications and 
Informatics (ICACCI), 2018, pp. 2332-2336, doi: 
10.1109/ICACCI.2018.8554622. 

 
[30] T. Blender, T. Buchner, B. Fernandez, B. Pichlmaier and 

C. Schlegel, "Managing a Mobile Agricultural Robot 
Swarm for a seeding task," IECON 2016 - 42nd Annual 
Conference of the IEEE Industrial Electronics Society, 
2016, pp. 6879-6886, doi: 
10.1109/IECON.2016.7793638. 

 
[31] P. V. Santhi, N. Kapileswar, V. K. R. Chenchela and C. H. 

V. S. Prasad, "Sensor and vision based autonomous 
AGRIBOT for sowing seeds," 2017 International 
Conference on Energy, Communication, Data Analytics 
and Soft Computing (ICECDS), 2017, pp. 242-245, doi: 

10.1109/ICECDS.2017.8389873. 
 
[32] P. Tripicchio, M. Satler, G. Dabisias, E. Ruffaldi and C. 

A. Avizzano, "Towards Smart Farming and Sustainable 
Agriculture with Drones," 2015 International Conference 
on Intelligent Environments, 2015, pp. 140-143, doi: 
10.1109/IE.2015.29. 

 
[33]  L. Vacho, D. HrubÝ, L. TÓth and Z. PalkovÁ, 

"Identification of Agricultural Plant Row Using the 
Clustering Algorithm in the Navigation of Mobile Robot," 
2020 7th International Conference on Energy Efficiency 
and Agricultural Engineering (EE&AE), 2020, pp. 1-4, 
doi: 10.1109/EEAE49144.2020.9278786. 

 
[34] K. -. H. Hsia, Z. -Y. Huang, B. -J. Yang and J. -M. Hsiao, 

"RoboRIO-based Crop Harvesting Robot," 2020 
International Symposium on Computer, Consumer and 
Control (IS3C), 2020, pp. 451-453, doi: 
10.1109/IS3C50286.2020.00122. 

 
[35] X. -k. Xu, X. -m. Li and R. -h. Zhang, "Remote 

Configurable Image Acquisition Lifting Robot for Smart 
Agriculture," 2019 IEEE 4th Advanced Information 
Technology, Electronic and Automation Control 
Conference (IAEAC), 2019, pp. 1545-1548, doi: 
10.1109/IAEAC47372.2019.8997721. 

 
[36] C. Lehnert, A. English, C. McCool, A. W. Tow and T. 

Perez, "Autonomous Sweet Pepper Harvesting for 
Protected Cropping Systems," in IEEE Robotics and 
Automation Letters, vol. 2, no. 2, pp. 872-879, April 
2017, doi: 10.1109/LRA.2017.2655622. 

 
[37] X. Chen et al., "Reasoning-based vision recognition for 

agricultural humanoid robot toward tomato harvesting," 
2015 IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS), 2015, pp. 6487-6494, doi: 
10.1109/IROS.2015.7354304. 

 
[38] Q. Feng, X. Wang, G. Wang and Z. Li, "Design and test 

of tomatoes harvesting robot," 2015 IEEE International 
Conference on Information and Automation, 2015, pp. 
949-952, doi: 10.1109/ICInfA.2015.7279423. 

 
[39] H. Yaguchi, K. Nagahama, T. Hasegawa and M. Inaba, 

"Development of an autonomous tomato harvesting robot 
with rotational plucking gripper," 2016 IEEE/RSJ 
International Conference on Intelligent Robots and 
Systems (IROS), 2016, pp. 652-657, doi: 
10.1109/IROS.2016.7759122. 

 
[40] H. Kang, H. Zhou, X. Wang and C. Chen, "Real-Time 

Fruit Recognition and Grasping Estimation for Robotic 
Apple Harvesting", Sensors, vol. 20, no. 19, p. 5670, 
2020. Available: 10.3390/s20195670. 

 
[41] T. Zhang, Z. Huang, W. You, J. Lin, X. Tang, and H. 



                                                                                                                             

20 
 

Huang, “An Autonomous Fruit and Vegetable Harvester 
with a Low-Cost Gripper Using a 3D Sensor,” Sensors, 
vol. 20, no. 1, p. 93, Dec. 2019, doi: 10.3390/s20010093. 

 
[42] H. Kurita, M. Iida, W. Cho and M. Suguri, "Rice 

Autonomous Harvesting: Operation Framework", Journal 
of Field Robotics, vol. 34, no. 6, pp. 1084-1099, 2017. 
Available: 10.1002/rob.21705. 

 
[43] Y. Xiong, Y. Ge, L. Grimstad and P. From, "An 

autonomous strawberry‐harvesting robot: Design, 
development, integration, and field evaluation", Journal 
of Field Robotics, vol. 37, no. 2, pp. 202-224, 2019. 
Available: 10.1002/rob.21889. 

 
[44] A. De Preter, J. Anthonis and J. De Baerdemaeker, 

"Development of a Robot for Harvesting 
Strawberries", IFAC-PapersOnLine, vol. 51, no. 17, pp. 
14-19, 2018. Available: 10.1016/j.ifacol.2018.08.054. 

 
[45] H. Masuzawa, J. Miura and S. Oishi, "Development of a 

mobile robot for harvest support in greenhouse 
horticulture — Person following and mapping," 2017 
IEEE/SICE International Symposium on System 
Integration (SII), 2017, pp. 541-546, doi: 
10.1109/SII.2017.8279277. 

 
[46] "Crop Diseases: Types, Control, And Prevention", 2022. 

[Online]. Available: https://eos.com/blog/crop-diseases/. 
[Accessed: 18- Sep- 2022]. 

 
[47] A. Mahlein, "Plant Disease Detection by Imaging Sensors 

– Parallels and Specific Demands for Precision 
Agriculture and Plant Phenotyping", Plant Disease, vol. 
100, no. 2, pp. 241-251, 2016. Available: 10.1094/pdis-
03-15-0340-fe [Accessed 18 September 2022]. 

 
[48] Y. Ampatzidis, L. De Bellis, and A. Luvisi, “iPathology: 

Robotic Applications and Management of Plants and 
Plant Diseases,” Sustainability, vol. 9, no. 6, p. 1010, Jun. 
2017, doi: 10.3390/su9061010. 

 
[49] H. Rizk and M. K. Habib, "Robotized Early Plant Health 

Monitoring System," IECON 2018 - 44th Annual 
Conference of the IEEE Industrial Electronics Society, 
2018, pp. 3795-3800, doi: 
10.1109/IECON.2018.8592833. 

 
[50] K. Murugan, B. J. Shankar, A. Sumanth, C. V. Sudharshan 

and G. V. Reddy, "Smart Automated Pesticide Spraying 
Bot," 2020 3rd International Conference on Intelligent 
Sustainable Systems (ICISS), 2020, pp. 864-868, doi: 
10.1109/ICISS49785.2020.9316063. 

 
[51] N. R. Dhumale and P. C. Bhaskar, "Smart Agricultural 

Robot for Spraying Pesticide with Image Processing 

based Disease Classification Technique," 2021 
International Conference on Emerging Smart Computing 
and Informatics (ESCI), 2021, pp. 604-609, doi: 
10.1109/ESCI50559.2021.9396959. 

 
[52] T. Dharanika, S. Ruban Karthik, S. Sabhariesh Vel, S. 

Vyaas and S. Yogeshwaran, "Automatic Leaf Disease 
Identification and Fertilizer Agrobot," 2021 7th 
International Conference on Advanced Computing and 
Communication Systems (ICACCS), 2021, pp. 1341-
1344, doi: 10.1109/ICACCS51430.2021.9441993. 

 
[53] A. Nooraiyeen, "Robotic Vehicle for Automated Detection 

of Leaf Diseases," 2020 IEEE International Conference 
on Electronics, Computing and Communication 
Technologies (CONECCT), 2020, pp. 1-6, doi: 
10.1109/CONECCT50063.2020.9198326. 

 
[54] M. S. P. Rahul and M. Rajesh, "Image processing based 

Automatic Plant Disease Detection and Stem Cutting 
Robot," 2020 Third International Conference on Smart 
Systems and Inventive Technology (ICSSIT), 2020, pp. 
889-894, doi: 10.1109/ICSSIT48917.2020.9214257. 

 
[55] K. Ferentinos, "Deep learning models for plant disease 

detection and diagnosis", Computers and Electronics in 
Agriculture, vol. 145, pp. 311-318, 2018. Available: 
10.1016/j.compag.2018.01.009. 

 
[56] T. S. Poornappriya and R. Gopinath, "Rice Plant Disease 

Identification Using Artificial Intelligence 
Approaches", International Journal of Electrical 
Engineering and Technology (IJEET), vol. 11, no. 10, pp. 
392-402, 2022. 

 
[57] H. Durmuş, E. O. Güneş and M. Kırcı, "Disease detection 

on the leaves of the tomato plants by using deep learning," 
2017 6th International Conference on Agro-
Geoinformatics, 2017, pp. 1-5, doi: 10.1109/Agro-
Geoinformatics.2017.8047016. 

 
[58] M. R. M. Kassim, "IoT Applications in Smart Agriculture: 

Issues and Challenges," 2020 IEEE Conference on Open 
Systems (ICOS), 2020, pp. 19-24, doi: 
10.1109/ICOS50156.2020.9293672. 

 
[59] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour and 

E. -H. M. Aggoune, "Internet-of-Things (IoT)-Based 
Smart Agriculture: Toward Making the Fields Talk," in 
IEEE Access, vol. 7, pp. 129551-129583, 2019, doi: 
10.1109/ACCESS.2019.2932609. 

 
 
 

 

  


