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ABSTRACT The concept of multi-model optimization brings the idea of finding all or most of the existing high quality solutions. 
Recent research on multi-model optimization (MMO) seemed to be using nature inspired algorithms in solving such interesting 
problems. Multi-model traveling salesman problem is an important but rarely addressed discrete MMO problem. This paper 
proposes a hybrid algorithm combining the Ant Colony Systems algorithm (ACS) with a modified genetic algorithm (MODGA) 
to solve multi-model traveling salesman problems (MMTSPs). The concept of the hybrid algorithm divides the solution into two 
parts where ACS is used to find an average quality solution which is then provided as a threshold to the MODGA to find other 
quality solutions as much as possible. Benchmark multi-model TSP problems have been used on the new algorithm to test its   
capability. 70% of the success PR and 0.6% of success SR values indicates the capability of the method solving MMTSPs. The 
results compared with several state of the art multi-model optimization algorithms showed that the proposed hybrid algorithm 
performs competitively with these algorithms. As the first approach to solve MMTSPs without niching strategies, improvements 
will lead the current algorithm to a greater place. 
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I Introduction 

There are many situations in the real world where we need to 
come up with multiple different good solutions than one. 
Particular advantages are when various practical constraints 
involve with the solutions. In applied mathematics, such 
problems are called multi-model optimization problems 
(MMOP) [1]. Multi-model optimization discusses finding 
several optimum solutions in a single run of an algorithm. 
When it comes to solving such MMO problems there are many 
approaches discussed in the literature. One way of achieving 
these optimal solutions is to run a particular algorithm many 
times by approaching different areas in the search space of the 
problem. In many of these cases there is no guarantee to find 
all or most of all the solutions by such a method. When the 
problem is in the discrete domain, the complexity of achieving 
multiple solutions is doubled.  

In the research literature on solving such multi-model 
optimization problems, continuous domain is highly touched 
and the discrete problems are less addressed [2]–[5]. To date, 
traveling salesman problem (TSP) is one of the most popular 
and intensively studied problems in optimization [6]–[8]. In 
many practical applications related to TSP, several better 
solutions are required than obtaining a single best solution. For 
example, it is always recommended for route planning 
applications to provide several acceptable routes so that the 
driver can choose the cheapest route based on his own 
knowledge. Since the road condition changes dynamically, a 
route can become invalid due to traffic jam or road 
maintenance. In these cases, drivers want to quickly switch to 
a candidate route of the same quality in order to get their job 

done on time. This is where the importance of multimodal TSP 
(MMTSP) comes to the stage. Among different approaches 
used to solve both continuous and discrete multi-model 
optimization problems, use of meta-heuristics such as 
evolutionary computing or swarm intelligence algorithms are 
undoubtedly popular due to their population behavior [9]–[12]. 
In this kind of research work where MMOPs were addressed 
using meta-heuristics, use of niching strategies is popular [2], 
[5], and [13]–[15]. Niching brings the idea of dividing the 
population of solutions into disjoint sets, with the intension of 
having at least one member in each region of the objective 
function. Drawbacks of such niching methods can be pointed 
out as problems with maintaining found solutions, difficulties 
in scalability and performance measuring, and problems arise 
with niching parameters. Hence the aim of this paper is 
twofold; to address discrete multi-model optimization 
problems; particularly MMTSP, and to use meta-heuristics to 
solve MMTSP without using niching methods.  

Population based stochastic meta-heuristics such as 
Evolutionary Algorithms (EA) and Swarm Intelligence (SI) 
algorithms are advantages for solving many real world 
optimization problems especially when they are with the NP 
hard characteristics. These algorithms have the anytime 
behavior by giving a feasible solution at any given time and 
dealing with multiple solutions at a given time in the predefined 
solution space. Exploration and exploitation properties 
embedded in these algorithms allow them to search the reliable 
solutions in the solution space. This study is consisting of two 
popular nature inspired algorithms; ant colony systems (ACS) 
and genetic algorithms (GA). ACS is hybridized with a 
modified version of GA to find multiple solutions.  

We structured the remainder of the paper as follows. The 
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literature related to the multi-model traveling salesmen 
problem is discussed in Section II. Section III is dedicated to 
introduce the AGH; the ant genetic hybrid solution we propose 
and its capabilities. In Section IV, we points out the numerical 
examples, the information on parameters used in the study and 
the results obtained. A statistical comparison with existing 
methods is also included. Finally, we draw conclusions briefly 
in Section V. 

II Solving Discrete Multi-Model Optimization Problems 
– Summarizing Similar Studies 

The research problem discussed in this paper mainly focuses 
on discrete multi-model optimization, specifically multi-model 
traveling salesman problem. Multi-model optimization can be 
defined as an optimization which focuses on finding more than 
one global and local solutions. Let’s say there is a problem to 
be solved to find minimum/maximum 𝑓(𝑥) , and the optimum 
solution is 𝑅. Then if there is a possibility of finding several 𝑥 
values which gives you 𝑅 or there exist only 𝑥 which is unique 
but there exist several local optimums (optimal in a certain 
neighborhood) is then can be stated as a multi-model solution. 
Therefore you may obtain local or global optimum values by 
solving a multi-model optimization problem. The problem that 
we address here belongs to the discrete domain which is the 
famous traveling salesmen problem having many global 
optimum routes. The main aim of the hybrid algorithm 
proposed in this paper is to catch all the global optima in a 
multi-model traveling salesmen problem. 

In practice, there are often problems with multiple solutions. In 
particular, the traveling salesman problem (TSP) can have 
several shortest tours from which travelers can choose one, 
depending on their specific requirements. The travelling 
salesman problem (TSP) is an NP-hard problem in 
combinatorial optimization studied in operations research and 
theoretical computer science. Given a collection of cities and 
the cost of travel between each pair of them, the traveling 
salesman problem, is to find the cheapest way of visiting all of 
the cities and returning to the starting point. In the standard 
version, the travel costs are symmetric in the sense that 
traveling from city X to city Y costs just as much as traveling 
from Y to X. This problem was first formulated as a 
mathematical problem in 1930 and is one of the most 
intensively studied problems in optimization. It is used as a 
benchmark for many optimization methods. There can be many 
studies related to finding optimal ways to solve single objective 
and multi-objective TSPs [16]–[20]. 

Multi-model TSPs is a topic which has been rarely addressed 
in the world of optimization research. Only handful of research 
can be found on the specific topic. Here we discuss some 
findings on multi-model optimization over discrete domains 
including the MMTSP. 

The very first published work on the matter of finding multiple 
optimum solutions in the discrete domain is dated back to 1995 
[21]. The authors addressed the same problem of MMTSP and 
attempted to solve it using genetic algorithms; what we are 
adapting in this research as well. As what we concern in the 
present research, they have also paid attention on finding a way 
that will get the help of niching strategies at its minimum. 

Representation method, fitness measures and the evolving 
mechanisms were presented with a novel idea to solve a 
MMTSP and a TSP problem was constructed on testing 
purpose. One disadvantage; although should not mention as 
such since the time this research has been carried out is more 
than two decades back, is the prior definition of the number of 
solutions that expect from the algorithm. Another important 
fact is that in there, the solutions were obtained in different runs 
where our approach tries to make it simultaneously which are 
obviously advantageous. Niching is common in stage when it 
is about multi-model optimization; no matter the type of the 
domain. Simply put, niching is a class of methods that try to 
converge to more than one solution during a single run. Niching 
is a general class of techniques intended to end up with roughly 
half the population converging in each minima/maxima. The 
idea here is that you discourage convergence to a single region 
of the fitness function by pretending there are limited resources 
there. The more individuals try to move in, the worse off they 
all are. The result is that as the GA converges to a single local 
optimum somewhere, the fitness of that optimum decreases 
because of the increased competition within the niche. 
Eventually, another region of the fitness landscape becomes 
more attractive, and individuals migrate over there. The idea is 
to reach a steady state - a fixed point in the dynamics - where 
an appropriate representation of each niche is maintained. This 
is the most common approach that has been adopted by many 
of the research conducted on multi-model optimization [5], 
[15], [22]. 

In 2006, a research has been carried out to find out how the 
niching strategies can be adopted to the ant colony optimization 
algorithms where the initial works of niching strategies can be 
found with evolutionary algorithms [23]. The TSP known as 
’crown’ problem was tested with the proposed algorithm. Later 
in 2018 solving MMTSP problems were addressed with 
another ant colony system algorithm incorporated with niching 
methods [24]. One important fact is that in that study, they have 
designed a test suite for multi-model TSPs which is useful and 
has been used in our study as well. In a similar study which was 
carried out at the same time, genetic algorithm has been used 
incorporating niching methods titled as “neighborhood based 
genetic algorithm” [25]. The same research group, later in 2020 
has published their work of solving multi-model TSPs using a 
niching memetic algorithm. The test suite with 25 test problems 
that they have designed in previous study has been used for the 
testing purposes [26]. 

The literature points out following important facts on solving a 
discrete multi-model optimization problem. 
 

 TSP is the most common discrete problem that has been 
solved as a discrete multi-model optimization problem. 

 
 Very limited approaches can be seen on solving discrete 

multi-model optimization problems. 
 
 In almost all the studies, a kind of niching strategy has 

been carried out to find the multiple solutions. 
 
For the convenience, the summary of the findings regarding 
discrete multi-model optimization are listed in Table 1. 
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Tab. 1: Summary of the findings regarding discrete multi- 
model optimization 

Year Paper Used Algorithm and/ or technique 
Niching 
(Yes/ 
No) 

1995 [21] 
Genetic Algorithms + 
Multiple Solution Technique 

Yes 

2006 [23] 
Ant Colony Optimization algorithm + 
Fitness Sharing / Simple Crowding 

Yes 

 
2018 

 
[25] 

Genetic 
Algorithms + 
neighborhood-based strategy 

 
Yes 

 
2018 

 
[24] 

Ant Colony System + 
niching strategy and multiple 
pheromone matrices 

 
Yes 

2020 [26] 
Memetic Algorithms + 
niche preservation technique 

Yes 

However researchers have pointed out some drawbacks of 
using niching methods on solving multi-model optimization 
problems such as difficulties in maintaining found solutions, 
specifying niching parameters, scalability and performance 
measuring [27]. These findings motivated to carry out the 
present work to find multiple optimum solutions 
simultaneously in MMTSPs without using existing niching 
strategies. We were interested to use latest trends in the field of 
meta-heuristics; use of hybrid algorithms to solve MMTSPs. 
We used a crossed version of two famous nature inspired 
algorithms; ant colony systems algorithm and the genetic 
algorithm. 

III AGH; The ant genetic hybrid solution to solve 
MMTSPs 

Here we discuss the outline of the hybrid algorithm and the full 
explanation on what we propose for solving multi-model 
traveling salesman problem. First sections will briefly 
introduce the two algorithms used; ACS and GA, and the 
modifications. The latter half presents the detailed description 
of the new hybrid algorithm that has been proposed with the 
modifications. 

A  Ant colony system algorithm (ACS) 

Being among the three major extensions of ant colony 
optimization algorithms, the ant colony system algorithm is one 
of the most popular and most widely used metaheuristic 
algorithms in the field of Swarm Intelligence. It is the most 
recommended and widely used meta-heuristic for the route 
finding problems [16]. The ACS algorithm is inspired by the 
optimized routing process from food source to the destination 
of most ant species, aiming the pheromone communication 
technique between them. The purpose is to find a good path 
between the colony and a food source. In the standard ant 
colony system, this good path refers to the shortest path. 

As going along the natural concept, the ACS works as follows. 
The primary step of the algorithm is to position the artificial 
ants on random starting points. While they are traveling among 
the nodes, the route they follow is stored for future usage. For 
a particular ant, to select the next city from where it is now is 
decided considering the amount of pheromone deposited in the 

nodes by the other ants (known as state transition). Each ant, 
upon visiting a city is responsible for laying some amount of 
pheromone according to the rule of local pheromone updating. 
Once all ants complete the tours, the cities followed by the best 
ant in the population will also benefited with some extra 
pheromone amount; according to the rule of global pheromone 
updating. The pseudo code of the algorithm is given in 
Algorithm 1. 

State transition rule is responsible for an ant to find its next 
visiting city. Assume the ant is in the node 𝑟. Its next city 𝑠 is 
determined by the equation 1.  
 
 
 
 
 

Where, 𝜏 (𝑟, 𝑢) is the pheromone density of an edge (𝑟, 𝑢), 
𝜂(𝑟, 𝑢) is [1/distance(𝑟, 𝑢)] for TSP. 𝐽 (𝑟) is the set of cities 
that remain to be visited by ant 𝑘 positioned on city 𝑟. The 
relative importance of the pheromone trail and the heuristic 
information are represented by the parameters 𝜃 and 𝛽 (𝜃, 𝛽 ≥
 0). 𝑞 is a random number uniformly distributed in [0, 1], 𝑞  is 
a parameter(0 ≤  𝑞  ≤  1), and 𝑆 is a random variable from 
the probability distribution given by the equation 2. 
 
 
 

 
 
 
 
 
ACS local and global updating happens according to the 
equation 3 and equation 4 respectively. 
 
 
 
 
 
 
Where 0 < ρ < 1 is a parameter. 
 
 
 
 
 
 
 
Where 
 
 
 
 
 
0 <  𝛼 <  1 is the pheromone decay parameter and 𝐿  is the 
length of the globally best tour. 
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In the AGH, the ACS works as the initializer by giving a 
single promising solution to a given MMTSP instance.  

B  Genetic Algorithms (GA) 

GA seems to be the most significant and widely used 
evolutionary algorithm since its inception. Its flexibility over 
different domains makes it easy to use and as a result many NP 
hard problems have their GA version of solutions [28] – [32]. 
An individual in GA is known as a chromosome which is 
typically a feasible solution to the problem to be solved. With 
GA, it can be stated that the binary encoded GA is the most 
popular version, however many other representations including 
real value, integer and permutation are also being used. Fitness 
of a population is calculated and the fitter individuals are then 
selected probabilistically to be parents to mate and produce 
offspring. Crossover and mutation are mainly used to generate 
offspring from the parents providing exploitation and 
exploration capabilities to the algorithm. Over time, as results 
of successful research, various crossover and mutation 
operators for different representations have been presented.  
 
Crossover basically allows new individuals to have blocks of 
genes from its parents representing the crossover happens in the 
natural genes. It is mutation that handles the part that cannot be 
done by this inheritance, allowing the new offspring to be 
slightly differing from their parents in a probabilistic manner. 
It further works on the solutions to get out without being 
trapped in local optimum solutions. The algorithm will be 
repeated until a predefined termination criterion is satisfied. 
The general framework of the genetic algorithm is given in 
Algorithm 2. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

C AGH; The ant, genetic hybrid solution to solve 
   MMTSPs 

In order to implement the proposed hybrid, several 
modifications were implemented on the standard genetic 
algorithm. The GA with proposed modifications is named as 
MODGA. The modifications are proposed in order to enhance 
the exploration capability of the standard genetic algorithm. By 
adopting the concept of hybridization, we divide the solution 
into two parts where ACS finds one optimum tour of a TSP and 
taking that as a threshold, the MODGA finds other 
Optimal tours as much as possible. We proposed two 
modifications to the standard GA, which has been introduced 
in a previous study for the continuous domain [33]. The 
concept of archiving and the use of counter variable are 
included in the modification. The hybrid AGH will work as 
follows. 

 Initially n ants are placed on starting nodes. 
 
 Ants will build tours with local and global pheromone 

updating rules. 
 
 At the termination, best ant tour with the optimal tour 

length is selected. (Let K be the optimal tour length 
given by the ACS). 

 
Using the K (threshold), MODGA algorithm operates as 
follows. 

 Each chromosome (a permutation) in the GA represents 
a possible solution to the TSP problem. 

 Fitness of a chromosome is calculated using the 
objective function. We used the distance of the route 
given by the solution as the objective function. 
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 Then selection, crossover and mutation will perform on 
the population to generate offspring. We have used 
’generational’ population model where we generate ’N’ 
offspring, where ’N’ is the population size, and the 
entire population is replaced by the new one at the end 
of the iteration. 

 
 From the new generation, the better chromosomes were 

identified (chromosomes whose fitness is ≤ to K), and 
the archiving concept is used to collect them. The empty 
positions in the population are then filled with random 
chromosomes. 

 
 A counting variable is located to identify the poor 

iterations (iterations which are not contributed to the 
archive for a specified period (Holt)) and new 
chromosomes are introduced to the population in a 
random manner. In the standard GA, crossover and 
mutation updates a solution using both exploitation and 
exploration properties. Since our concern lies on 
enhancing the random replacements when significant 
performance cannot be seen, this modification further 
tries to enhance the exploration capability.  

 
 Finally, after a fixed number of iterations, the output of 

the AGH is the possible optimal routes for the MMTSP 
which are located in the archive. 

For further clarification of the proposed approach, the pseudo-
code of the AGH (ACS MODGA Hybrid) to solve MMTSPs is 
given in Algorithm 3. 

It is important to investigate the features of AGH which have 
contributed to the capability of the algorithm in solving 
MMTSPs. One of the major decisions that have to be taken is 
how to identify the global optimum when it is unknown. It is 
achieved via an approximation done by the ACS algorithm. 
Once we have an approximation we used it as a threshold to 
find other possible routes having same, closer or better route 
distances with the enhanced genetic algorithm. By introducing 
an archive and the mechanism to identify poor iteration circles, 
we tried to improve the exploration capability of the algorithm 
to find multiple solutions as much as possible. Once a solution 
is found we put it to the archive and replace its position with a 
random solution in order to change the direction of the search 
(searching towards the same solution is discouraged). The 
speed of the algorithm is enhanced with the random 
replacements introduced for the poor iteration circles (when no 
improvement can be seen in iterations for a predefined 
number). These modifications to the standard GA gave 
acceptable solutions to the MMTSPs. 

The significant features of this hybrid can be stated as it uses 
no niching strategy that has been used in almost all the 
approaches we have seen to solve multi-model optimization 
problems. This can be considered as a milestone in the discrete 
multi-model research where the opportunities are revealed 
apart the traditional niching methods. The algorithms used in 
this study are very simple and user friendly and the 
modifications are simple but precious. The concepts adapted 
enhance the algorithm by giving more exploration ability and 
the early identification of poor iterations support to acquire the 

maximum benefits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV Experimentation 

AGH can be considered as the very first attempt of using swarm 
intelligence and evolutionary algorithms to solve a discrete 
multi-model traveling salesman problem without using a 
niching method. This section details the test problems and the 
obtained results of the suggested hybrid. 

This research work is carried out on an Intel Core i7 laptop with 
a RAM of 4GB. Program is developed in MATLAB. Parameter 
settings of the algorithms are presented in the Table 2. 
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Tab. 2: Parameter values used in the AGH Algorithm 
 
 

 

A Summary of Benchmark MMTSPs used 

Set of MMTSP problems were selected from different studies 
as well as from the TSPLIB [21], [23]–[26], [34]. Details of the 
twenty (20) benchmark MMTSPs used are given below. 

 T1: The TI test problem was devised by selecting towns 
on the Euclidean plane in such a way that two very 
different global optima were expected. This MMTSP 
was originally proposed in [21] and they have found two 
different global optimum / maximum routes. 

 
 T2: The ’crown’ problem- The ’crown’ problem is a 

symmetric, 2-Dimensional Euclidean TSP containing 6 
cities used in [23]. They were able to locate two 
different optimum routes. 

 
 The 06 MMSTPs given in Table 3 were taken from [24]. 

 
 
 

Tab. 3: 
 

Problem 
No of 

cities 
Optimal 
length 

# of solutions ac- 
cording to [24] 

self8-1 8 187.444 3 

self8-2 8 309.436 2 

self10-1 10 225.133 2 

self10-2 10 236.212 2 

test16 16 918.353 9 

ulysses16 16 73.9876 10 
 
 

 The 12 MMSTPs given in Table 4 were taken from [26]. 
 

                  

Tab. 4: 

 
B Results 

The Table 5 shows number of multiple optimum routes 
obtained by the AGH algorithm for the benchmark MMTSP 
problems. For 5 MMTSP instances, the AGH algorithm has 
given outstanding number of solutions where other methods 
have not given. But it should be noted that, for some 
complicated problems, AGH algorithm has not performed as 
some of the other methods with niching strategies. 

Tab. 5: Number of different optimum solutions obtained 

MMTSP 
Instance 

# of different 
solutions form 
previous studies 
and bench- mark 
details 

# of different 
solutions 
from AGH 
algorithm 

T1 2 6 

T2 – Crown Problem 2 2 

self8-1 3 5 

self8-2 2 2 

self10-1 2 2 

self10-2 2 4 

test16 9 10 

ulysses16 10 9 

Simple 9 3 3 

simple2 10 4 4 

simple3 10 13 13 

simple4 11 4 4 

simple5 12 2 2 

simple6 12 4 4 

geometry1 10 56 36 

geometry2 12 110 3 

geometry3 10 4 6 

ACS MODGA 

Parameter Value Parameter Value 

α, ρ (Pheromone 
decay parameter) 

0.1 PC (Partially 
Mapped Crossover) 

0.85- 0.95 

q0, β 0.9, 2 Pm (Swap 
mutation) 

0.01- 0.25 

Population Size 50 Population Size 50- 200 

Iterations 200 Iterations 500- 2000 

Problem 
No of 
cities 

Optimal 
length 

# of solutions 
according to the 
standard repository 
mentioned in[26] 

Simple 9 9 680.8311 3 

simple2 10 10 1264.4 4 

simple3 10 10 832.2031 13 

simple4 11 11 803 4 

simple5 12 12 754 2 

simple6 12 12 845 4 

geometry1 10 10 130.821 56 

geometry2 12 12 1344 110 

geometry3 10 10 72.4033 4 

geometry4 10 10 72 4 

geometry5 10 10 78.3758 14 

geometry6 15 15 130 196 
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geometry4 10 4 3 

geometry5 10 14 13 

geometry6 15 196 25 

 
 
 
PR and SR are standard measures proposed by [35] to evaluate 
the performance of multi-model optimization problems. We 
have measured the values for the 20 MMTSPs used (see Table 
6). 

PR is a measurement that calculates the average percentage of 
the optimums given by an algorithm over all the runs (here we 
used 50 runs), and SR calculates the average percentage of the 
runs where all global optimum are given by the algorithm. 
Equation 6 and 7 show the formulas. 
 
 
 
 
Where 𝑁𝑃𝐹  denotes the number of global optima found at the 
end of the i-th run, 𝑁𝐾𝑃 the number of known global optima, 
and 𝑁𝑅 the number of runs. 
 
 
 
 
SR measures the percentage of best runs (a best run is defined 
as a run where all known global optima tours are found) out of 
all runs. 
 

Tab.6: PR AND SR VALUES OF ACS-MODGA FOR    THE 
20 BENCHMARK PROBLEMS 

 

MMTSP 
Instance PR Value SR Value 

T1 1 1 

T2 – Crown Problem 1 1 

self8-1 1 1 

self8-2 1 1 

self10-1 1 1 

self10-2 1 1 

test16 0.8888 0.5 

ulysses16 0.35 0 

Simple 9 1 1 

simple2 10 1 1 

simple3 10 0.6923 0 

simple4 11 1 1 

simple5 12 1 1 

simple6 12 0.85 0.6 

geometry1 10 0.4125 0 

geometry2 12 0.0427 0 

geometry3 10 1 1 

geometry4 10 0.5 0 

geometry5 10 0.7857 0 

geometry6 15 0.0648 0 

 
 
70% of better PR values and 60% of better SR values indicate 
the success and the capability of the proposed algorithm. It 
should be admitting that for some complicated problems, zero 
SR indicated that improvements of the AGH are essential to 
find the all possible routes. Improvements to the algorithm and 
the parameter values is essential and possibilities will give a 
good impact as AGH is the first algorithm to solve MMTSPs 
without complicated niching strategies.  
 
Graphical representations of some of the solutions obtained can 
be seen in Figures 1, 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: The four routes obtained by AGH for the ’simple 
            4-11’ MMTSP instance 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: The six routes obtained by AGH for the ’T1’ 
            MMTSP instance 
 
The graphs on the improvement of the fitness during iterations 
indicate the viability of the algorithm in optimizing the 
solutions (see Figure 3). 
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Fig. 3: Fitness changes over iterations of 4 MMTSP instances 
 
For the 12 composite MMTSP problems which includes 
complicated MMTSPs as well (Table 4), the obtained average 
distances are as follows (Table 7). 
 
Tab. 7: Average distances obtained by the AGH algorithm 

 
C Statistical Analysis 

A statistical analysis has been done to compare the 
performance of the AGH algorithm with number of solutions 
given in the standard MMTSP repository mentioned in [26]. 
We used Wilcoxon signed-rank test; a non-parametric test 
which applies to two related samples [36]. It is an alternative 
test for the paired Student’s t-test or the t-test for dependent 
samples when the population cannot assume to be normally 
distributed [37]. It uses the standard normal distributed z value 
to test of significance. We used results (number of different 
alternative roots) from AGH algorithm with number of 
solutions given in the standard MMTSP repository [26] for the 
set of 12 MMTSPs as two related samples. We conducted the 
test using SPSS statistical software, to test the following 
hypothesis. 

H0: There is no significant difference between number of 
solutions given by AGH and the standard MMTSP 
repository [26] 

 

H1: There is a significant difference between number of 
solutions given by AGH and the standard MMTSP 
repository [26] 

 
We received the following output. The SPSS output has given 
both a W-value and z-value. Since the size of N is low (different 
values), and particularly it’s below 10, we used the W-value to 
evaluate the hypothesis. 
 
 
 
 
 
 
 
 
 
 
 
The value of W is 3. The critical value for W at N = 6 (p <0.05) 
is 0. So we do not reject H0; that is we accept that there is no 
significant difference between the number of solutions given 
by AGH and the standard MMTSP repository 
[26]. 

As a final supposition, we can state that with the conducted 
statistical analysis, the AGH is performing well for the 
MMTSPs given in the standard MMTSP repository mentioned 
in [26]. However, the improvements are significant for most 
cases. For this reason, we say that the presented AGH is 
capable in solving MMTSPs, meeting, in this respect, the main 
objective of this study which is to find a hazel free approach to 
deal with discrete multi-model optimization problems. It 
should be noted that AGH is unable to perform well with 
MMTSPs which have large number of multiple solutions. We 
suppose that the reason is the less exploration power of 
MODGA due to the lacking of niching strategies. But with 
careful modifications, in future we hope to improve AGH; 
without complicated niching work, to be suitable for such 
MMTSPs as well. 

V Conclusions and further work 

Here we presented a hybrid algorithm (AGH) implemented 
using ACS and GA, to solve multi-model traveling salesmen 
problem. The proposed algorithm is two phased. ACS finds the 
initial optimum value for a tour which works as a threshold in 
the second half. The MODGA which uses an archive and a 
flag/counter variable runs in the second half with the given 
threshold to find the multiple optimum solutions/routes for the 
MMTSP. The algorithm does not relay on niching strategies as 
all the other algorithms that has been used in the literature to 
solve MMTSPs. This can be stated as the most significant 
feature of this algorithm that provides a less complicated 
approach to solve MMTSPs. 

In order to prove the capability of the proposed AGH 
algorithm, we have compared the performance on more than 20 
MMTSPs with the existing methods. A statistical analysis has 
been carried out on the obtained results using Wilcoxon signed-
rank test. Overall, the AGH algorithm performs equally well 

MMTSP Instance Published 
Distance 

Avg distance from 
AGH 

Simple1 9 680 680.8311 
simple2 10 1265 1264.4 
simple3 10 832 832.2031 
simple4 11 803 803 
simple5 12 754 754 
simple6 12 845 845 
geometry1 10 130 130.821 
geometry2 12 1344 1344 
geometry3 10 72 72.4033 
geometry4 10 72 72 
geometry5 10 78 78.3758 
geometry6 15 130 130 
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for many MMTSP instances. However for the instances having 
large number of different optimum routes, AGH was unable to 
perform well. We believe that as further enhancements, 
amplifying the exploration ability of the algorithm will provide 
better solutions. Here, it is important to highlight that the main 
goal of this study is not to find an accurate algorithm for 
MMTSPs, rather to find the capability of implementing a 
flexible, less complicated algorithm which can handle discrete 
multi-model optimization problems. 

We also expect to consider the parameter tuning of the two 
algorithms used. As we know, especially in swarm intelligence 
algorithms, there are many algorithm specific parameters to be 
fixed by the user. This will directly affect the performance of 
the algorithm. To popularize the usage of these algorithms, 
parameter tuning techniques are essential to find the proper 
parameter values without the involvement of the user. Further, 
inspired by the results obtained from our experiment; we are 
planning to expand the study on solving other discrete multi-
model optimization problems. 
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