

144	

Real-Time	Vehicle	Type	Recognition	Using	Deep	Learning	Techniques	
	

AMRNVB	Pethiyagoda1#,	TL	Weerawardane2,	MWP	Maduranga1	and	DMR	Kulasekara1	
	

1Department	of	Computer	Engineering,	Faculty	of	Computing,	General	Sir	John	Kotelawala	Defence	University,	
Ratmalana,	Sri	Lanka	

2Department	of	Electrical,	Electronic	&	Telecommunication	Engineering,	Faculty	of	Engineering,	General	Sir	
John	 Kotelawala	Defence	University,	Ratmalana,	Sri	Lanka	

	
	#nadinpethiyagoda4@gmail.com	

Abstract:	 Modern	 intelligent	 transportation	 systems	
heavily	rely	on	vehicle	type	classification	technology.	Deep	
learning-based	vehicle	type	classification	technology	has	
sparked	 growing	 concern	 as	 Image	Processing,	 Pattern	
recognition,	 and	 Deep	 Learning	 have	 all	 advanced.	
Convolutional	 neural	work,	 particularly	 You	 Only	 Look	
Once	 (YOLO),	 has	 demonstrated	 significant	 benefits	 in	
image	classification	and	object	detection	during	the	past	
few	years.	Due	to	its	ability	to	forecast	objects	in	real-time,	
this	algorithm	increases	detection	speed.	High	accuracy:	
The	YOLO	prediction	method	yields	precise	results	with	
few	background	mistakes.	Additionally,	YOLO	is	aware	of	
generalized	 object	 representation.	 This	 method,	 which	
ranks	 among	 the	 best	 for	 object	 detection,	 performs	
significantly	better	than	R-CNN	techniques.	In	this	paper,	
YOLOv5	 is	 used	 to	 demonstrate	 vehicle	 type	 detection;	
YOLOv5	 m	 model	 was	 chosen	 since	 it	 suits	 mobile	
deployments,	 The	model	was	 trained	with	 a	 dataset	 of	
9200	 images,	 where	 2300	 images	 were	 allocated	 for	
each	 class	 with	 a	 variety	 of	 vehicles.	 Experimental	
results	 for	 100	 epochs	 with	 a	 batch	 size	 of	 16	 show	
mAP@.5	at	78.1%	and	mAP@.5:.95	at	71.7%	trained	and	
tested	on	four	vehicle	 classes.	

	
Keywords:	You	Only	Look	Once	(YOLO),	Deep	Learning,	
Convolutional	Neural	Networks	(CNN),	 Single	Shot	
Detector	(SSD)	Vehicle	Recognition	

1. Introduction	

Various advancements in the field of machine vision
have fundamentally transformed the world. Technology
has had an impact on various industries, including
transportation. Because of population increase and human
requirements, the use of vehicles has risen dramatically. As
a result of the increased difficulties in controlling these
vehicles, Intelligent Traffic Systems were developed,
Vehicle Type Detection systems are critical components of
intelligent traffic systems, and they have a wide range of
applications [1], including highway toll collection, traffic
flow statistics, and urban traffic monitoring. The
development of autonomous driving technology has given

people a new knowledge of high-level computer vision, and
intelligent transportation and driverless driving
technologies have drawn an increasing amount of interest.
Vehicle Type Detection is a relatively significant
technology in intelligent transportation and autonomous
driving. There are already numerous methods for
categorizing different types of vehicles thanks to the quick
growth of large-scale data, computer hardware, and deep
learning technologies. CNN, Faster RCNN, YOLO [2,18],
and SSD have mostly used approaches that can be applied.
This work uses the most recent real-time object detection
technique of YOLO to address the drawbacks of existing
object detection systems.

YOLO is a state-of-the-art, real-time object detection
system introduced in 2015 by [13]. YOLO proposes using
an end-to-end neural network that provides predictions of
bounding boxes and class probabilities all at once as
opposed to the strategy used by object detection algorithms
before it, which repurpose classifiers to do detection. R-
CNNs are a type of two-stage detector and one of the early
deep learning-based object detectors. The major issue with
the R-CNN family of networks is their speed. However,
though they frequently produce very accurate results, they
were incredibly slow, averaging barely 5 FPS on a GPU.
YOLO employs a one-stage detector technique to aid in
accelerating deep learning-based object detectors. YOLO
has the natural advantage of speed, better Intersection over
Union in bounding boxes, and improved prediction
accuracy compared to real-time object detectors. YOLO
runs at up to 45 FPS, making it a far faster algorithm than
its competitors. The GoogleNet architecture inspired
YOLO’s architecture, YOLO’s architecture has a total of
24 convolutional layers with 2 fully connected layers at the
end. The main problems with YOLO, the identification of
small objects in groups and the localization accuracy—
were supposed to be addressed by YOLOv2 [14]. By
implementing batch normalization, YOLOv2 raises the
network's mean Average Precision. The addition of anchor
boxes, as suggested by YOLOv2, was a considerably more
significant improvement to the YOLO algorithm. As is well
known, YOLO predicts one object for every grid cell.
Although this simplifies the constructed model, it causes

145	

problems when a single cell contains several objects

because YOLO can only assign one class to the cell.

By enabling the prediction of numerous bounding boxes

from a single cell, YOLOv2 eliminates this restriction. The

network is instructed to anticipate five bounding boxes for

each cell to do this. YOLO9000 [14] was presented as a

technique to discover more classes than COCO as an object

detection dataset could have made possible, using a similar

network design to YOLOv2. Although YOLO9000 has a

lower mean Average Precision than YOLOv2, it is still a

powerful algorithm because it can identify over 9000

classes. YOLOv3 [15] was proposed to enhance YOLO

with modern CNNs that utilize residual networks and skip

connections. YOLOv2 employs the DarkNet-19 as the

model architecture, but YOLOv3 uses the significantly

more intricate DarkNet-53, a 106-layer neural network with

residual blocks and up sampling networks, as the model

backbone. With the feature maps being extracted at layers

82, 94, and 106 for these predictions, YOLOv3's

architectural innovation allows it to forecast at three

different sizes.

YOLOv4 [16] is built using CSPDarknet53 as the

backbone, SPP (Spatial pyramid pooling), and PAN (Path

Aggregation Network) for what is known as "the Neck,"

and YOLOv3 for "the Head" following recent research

findings.

This system uses the latest algorithm, YOLOv5, which uses

the PyTorch [20] framework possessing many advantages

such as smaller size, higher performance, and better

integration than YOLOv4.

2. Related	Works	
In the works of [2][6], the authors have presented

experimental results that that YOLOv4 had better

performance, F1score, precision, recall, and mAP values

compared to other models in [2] and YOLOv3 has

demonstrated better results in performance and accuracy

than R-CNN and Fast R-CNN [6]. Yanhong Yang [3] uses

the SSD algorithm to achieve vehicle classification and

positioning, from the picture collection, picture calibration,

model training, and model detection, several aspects of the

detailed introduction of the vehicle classification process.

PASCAL VOC dataset was used, and TensorFlow

framework and SSD model with VGG16 model were used

for model training. In [2-9] [11][12] Common vehicle

categories are bus, car, truck, bus, and motorbikes. In [6-7]

limitations were how to effectively detect vehicles in

complex environments. Due to the limitations of hardware

and time, in-depth research can be conducted in the future

on the aspects of improving accuracy, improving detection

accuracy, and improving calibration methods. A

combination of YOLOv4 and DeepSORT has been used in

[7] for vehicle detection and real-time object tracking,

respectively.

In [8] proposes a CNN model for vehicle classification

with low-resolution images from a frontal perspective. The

model was trained as a multinomial logistic regression

where the cross-entropy of the ground truth labels, and the

model's prediction estimates the error. Data augmentation

was performed to prevent overfitting. A leaky rectifier

activation function (LReLU) instead of (ReLU) was set up

for the convolution output. However, [10] proposed a CNN

architecture for vehicle type classification. The system

requires only one input, a vehicle image. The model

consists of two convolution layers, 1st, and 2nd layer. Two

pooling layers, four activation functions (ReLU) The 3rd,

4th, and 5th layers are fully connected. In [12] proposed the

network developed has a total of 13 layers, 1 convolutional

input layer, 11 intermediate layers including a combination

of Rectified Linear Unit (ReLU) activation, convolutional,

dropout, max pooling, flatten, and densely connected layers,

and 1 SoftMax output layer. In the works [6][11] the

gathered datasets from public sources such as COCO,

OpenImage, PASCAL VOC, and some works their traffic

data collected from camera sources. Dataset split was 80:20

80% for training and 20% for testing [6][9].

In the works [17][12] The test data gave it had produced

better accuracies with pictures with high definition while

for the pictures with low definition, the recognition

accuracy decreases. It is also observed that the probability

of identifying small cars as medium-sized vehicles is only

8.69%, and the probability of identifying large cars is lower,

2.14% only in [17] and. Further improvements in prediction

accuracy include training on more quality images to allow

it to extract more features from the data and further dividing

into more classes [12]. In [5][10] the authors wish to aim

for better accuracies and stability by searching for suitable

hyperparameters. Research gaps in [5-7] show the need to

cover more variations of vehicles, Cars Image datasets need

more data to classify, train, and real-time data analysis of

the traffic and also more complex environmental conditions

such as night-time and heavy rain. In [8-9][11] images that

could be produced were replicated using data augmentation

to improve precision and [4] stated image processing

techniques were used to improve prediction accuracy. In

[11] the authors have used Faster R-CNN, for shareable

convolutional layers of RPN and detection network, the

improved ZF net is applied on the PASCAL VOC2012 as

the backbone network.

In [12] the authors have developed a CNN, to detect types

of vehicles commonly found on the road for database

collection purposes and improve the existing vehicle

recognition for advanced applications. [10] To avoid

overfitting Dropout method has been used, and the final

layer is the predictor. TensorFlow was used to implement

the CNN structures. The hyperparameters for the CNN

model were also mentioned which can affect the

performance of the CNN. The dataset mentioned was

obtained from extracted frames of a video source. In works

[11] RPN is trained by using Stochastic Gradient Descent

(SGD). The method has better detection average precision

for cars and trucks, while the average precision of minivans

146	

and buses is lower. The result might be caused by a little
training set of minivans and buses.

Some knowledge gaps were identified in the
literature review conducted; many authors have included
foreign datasets, resulting in fewer accuracies when tested
over real-time data. Some researchers are trying to improve
the performance and recognition accuracies by considering
images of different lighting, weather conditions, noise
reduction, etc. which had been a challenge. According to
the works in [2], it is clear that YOLO had outperformed
other models such as Faster-RCNN and SSD.

3. Design	Framework	and	Methodology	

This section follows the methodology applied to collecting
and building the dataset needed for model train/test,
exploring, and understanding the architecture behind the
YOLOv5, and choosing the best approach for the desired
output.

A. Dataset

In this experiment, the gathered dataset was from public
sources such as Kaggle, Stanford Cars Dataset, vehicle
images scraped from local automotive e-commerce
websites in Sri Lanka, and traffic data collected from a
video source with the following characteristics: Video
duration: 300 seconds, resolution: 1080x2340 pixels, frame
rate: 30 FPS. The dataset was prepared for six major types
of vehicles, such as cars, buses, vans, trucks, motorbikes,
and three wheels. These images are of different
illumination, angle, and different vehicle models. The total
dataset size is 9,200 images at a resolution of resized to
160x120 pixels, with 2,300 images allocated for each class.
The gathered dataset was annotated in YOLO format using
a free open source called Labelling to graphically label the
images. For each image file in the same directory, a text file
with the same name is created in the YOLO labelling
format. Each text file provides the object class, object
coordinates, height, and width for the accompanying image
file. The dataset was split into train and test, which are 80%
(7,360 images) and 20% (1,840 images) respectively.

Figure 1. Sample images from the training dataset

B. YOLOv5
The most cutting-edge object detection algorithm

currently in use is the YOLOv5 [19], which Ultralytics
introduced in June 2020. It is a novel convolutional neural
network (CNN) that accurately detects objects in real-time.
This method processes the entire image using a single
neural network, then divides it into parts and forecasts
bounding boxes and probabilities for each component. The
predicted probability is used to weight these bounding
boxes. In the sense that it only performs one forward
propagation cycle through the neural network, the approach
"only looks once" at the image before making predictions.
After non-max suppression, it then provides discovered
items. YOLOv5 consists of:

- Backbone: New CSP-Darknet53

- Neck: SPPF, New CSP-PAN

- Head: YOLOv3 Head

Figure 2. YOLOv5 architecture

The overview of the YOLOv5 architecture is shown in
Figure 2. To understand the classes of objects in the data,
YOLOv5 models need to be trained using labelled data.
The custom dataset that was prepared was of the YOLO
format with one text file per image. The text file
specifications are:

• One row per object

• Each row is class x_center y_center width height
format.

• Box coordinates must be in normalized xywh
format (from 0 - 1). If your boxes are in pixels,
divide x_center and width by image width, and
y_center and height by image height.

• Class numbers are zero-indexed (start from 0).

YOLOv5 provides pre-trained models:

147	

���	 ���	 ���	

�	
�	

�	 ℎ	

Figure 3. YOLOv5 models

Larger models, such as YOLOv5x and YOLOv5x6, will
almost always yield better results, but they contain more
parameters, need more CUDA memory to train, and run
more slowly.
The YOLOv5 loss consists of three parts:

• Classes loss (BCE loss)

• objectless loss (BCE loss)
• Location loss (CIoU loss) B���	=	C1B���	+	C2B���		+	C3B���	 (1)

The objectness losses of the three prediction layers (P3,
P4, P5) are weighted differently. The balance weights are
[4.0, 1.0, 0.4] respectively.

4. Model	Training	and	Results	

The model was trained on a system equipped with Ubuntu
20.04.4 LTS, CUDA 10.2, 32 GB RAM, NVIDIA GeForce

RTX 3090, Python 3.8, PyTorch 1.8.0. The yolov5m
model was used for the training and test purpose, and a
YAML file was defined to configure the paths for the
dataset and the number of classes to train (Bus, Car,
Motorbike, Van, Truck, Three-wheel).

"���	=	4.0	∙	

"�����	

+	1.0	∙	"������	 +		0.4	∙	"���#�	
(2)

YOLOv5 uses the following formula to calculate the predicted target information:

��	=	(2	∙	,(��)	−	0.5)	+	0�	 (3)

��	=	(2	∙	,(��)	−	0.5)	+	0�	 (4)

��	=	��	 ∙	(2	∙	,(��))2	 (5)

�ℎ	=	�ℎ	∙	(2	∙	,(�ℎ))2	 (6)

The	build	targets	to	match	positive	samples:	Calculate	the	aspect	ratio	of	GT	and	Anchor	Templates	

��	=	1#	/1��	 (7)

�ℎ	=	ℎ#	/ℎ��	 (8)

Figure 4. Confusion Matrix

However, it was trained only for 4 classes (Bus, Car,
Motorbike, Three-wheel) despite having a few images of
trucks and vans included. The model was trained for 100
epochs with a batch size of 16, to visualize and track data in
real-time wandb (Weights and Bias) Platform was used.

during training, which allows for determining the epoch
where the model starts to overfit. Figure 4 shows the
confusion matrix, the only images that
were incorrectly classified when the trained model was
tested using the validation set were those in which a truck
was misinterpreted for a bus and vice versa. This is because,
when viewed from the front, a bus, and a truck both have
characteristics in common.

���	

�	
	 ���	ℎ	

=	max	(�	 ,	1)	 (9)
�!	

=	max	(�	 ,	1)	 (10)
�ℎ	

����	=	max	

(����	

,	����)	 (11)

����	=	���ℎ���	 (12)

The final metric, the mAP across test data, is generated by
averaging all mAP values for each class in order to z

�	

ℎ	

148	

Figure 5. F1 Curve

The weighted harmonic mean of a classifier's precision (P) and recall
(R), considering =1, is known as the F-measure (F1 score).
According to the greatest F1 value in Figure 5, the confidence value
that maximizes the precision and recall is 0.254. (0.77). Figure 6
presents the precision of each class obtained after the completion of
training, it is the proportion of positive identifications which are
actually correct, and Figure 7 presents the recall of each class, it is
the proportion of actual positives which are identified correctly, the
classes Bus, Car, Motorbike and Threewheel displayed satisfactory
results although the classes Van and Truck had low results due to
lack of images in the training dataset. Figure 8 shows the
precision/recall curve generated from the validation set after training
completes.

Figure 6. Precision Curve

Figure 7. Recall Curve

Figure 8. Precision/Recall Curve

Class mAP

Precision Recall mAP@.5 mAP@.5:.95

Bus 96.8 95.9 99.2 96.9

Car 94.2 96.8 98.5 93.2

Motorbike 96.5 96.4 98.7 90.0

Thre
e-
whee
l

96.7 98.0 98.9 95.0

All 75.4 79.3 78.1 71.7

Table 1. Model results of each class

The mAP@.5 was 78.1% and mAP@.5:.95 was 71.7%.
The training results under several epochs 30, 60, and 90 are
provided as follows. At 30 epochs mAP@.5 was observed
of 71.43%, mAP@.5:.95 of 62.16%, At 60 epochs
mAP@.5 of 76.7%, mAP@.5:.95 of 68.62% and at 90
mAP@.5 of 77.96% , mAP@.5:.95 at 71.2%. The best
results were found at epoch 93 with a mAP@.5 at 78.066%
and mAP@.5:.95 at 71.726%. The following experiment
has shown satisfactory results, considering the knowledge
gaps identified in the existing research.

5. Conclusion

This paper proposes a model for categorizing vehicle types
utilizing the most recent state-of-the-art object detection
model, YOLOv5. With an overall mAP@.5 of 78.1 %, the
model's promising results. Although the dataset contains
9,200 images with 2,300 each, Bus, Car, Motorbike, and
Three-wheel classes were actually trained, Van and Truck
classes had very few data since some images had Vans and
Trucks captured in the above 4 classes that were trained
with, therefore they couldn’t be omitted out. However, this
result of mean average precision obtained relatively low
compared to the higher precisions obtained for classes Bus,
Car, Motorbike, and Three wheel due to the classes Van
and Truck. However, this can be avoided in the future by
annotating those classes which will yield better results. The

model will, nevertheless, be very successful at recognizing
the type of car on the road, as shown by the results. Any
future transportation system that must accurately identify
the type of vehicle can easily incorporate it. While the
classes can be further broken down into a more detailed
manner, dividing classes of vehicles as SUVs, sedans,
crossovers, jeeps, etc., Following the experiment, it was
clear, that the model produced better results with respect to
the precision and recall, and it is determined that the model
could achieve best results, greater quality photos must be
utilized to train the model to allow it to extract more
features from the data. Hyperparameter tuning, a better
dataset with high-resolution images, increasing the scope
of Van and Truck training datasets to enhance precision.

149	

References	

[1] Chen, Y., Zhu, W., Yao, D., and Zhang, L. 2017. Vehicle type
classification based on convolutional neural network. In 2017
Chinese Automation Congress (CAC) (pp. 1898-1901).
[2] Kim, J.a., Sung, J.Y., and Park, S.h. 2020. Comparison of
Faster-RCNN, YOLO, and SSD for Real-Time Vehicle Type
Recognition. In 2020 IEEE International Conference on
Consumer Electronics - Asia (ICCE-Asia) (pp. 1-4).

[3] Yang, Y. 2020. Realization of Vehicle Classification System
Based on Deep Learning. In 2020 IEEE International Conference
on Power, Intelligent Computing and Systems (ICPICS) (pp. 308-
311).
[4] Aishwarya, C., Mukherjee, R., and Mahato, D. 2018.

Multilayer vehicle classification integrated with single frame
optimized object detection framework using CNN based deep
learning architecture. In 2018 IEEE International Conference on
Electronics, Computing and Communication Technologies
(CONECCT) (pp. 1-6).
[5] Htet, K., and Sein, M. 2020. Event Analysis for Vehicle
Classification using Fast RCNN. In 2020 IEEE 9th Global
Conference on Consumer Electronics (GCCE) (pp. 403-404).
[6] Shekade, A., Mahale, R., Shetage, R., Singh, A., and Gadakh,

P. 2020. Vehicle Classification in Traffic Surveillance System
using YOLOv3 Model. In 2020 International Conference on

Electronics and Sustainable Communication Systems (ICESC)
(pp. 1015-1019).

[7] Doan, T.N., and Truong, M.T. 2020. Real-time vehicle
detection and counting based on YOLO and DeepSORT. In 2020
12th International Conference on Knowledge and Systems

Engineering (KSE) (pp. 67-72).
[8] Roecker, M., Costa, Y., Almeida, J., and Matsushita, G. 2018.
Automatic Vehicle type Classification with Convolutional Neural
Networks. In 2018 25th International Conference on Systems,
Signals and Image Processing (IWSSIP) (pp. 1-5).
[9] Harianto, R., Pranoto, Y., and Gunawan, T. 2021. Data
Augmentation and Faster RCNN Improve Vehicle Detection and

Recognition. In 2021 3rd East Indonesia Conference on Computer
and Information Technology (EIConCIT) (pp. 128-133).

[10] Maungmai, W., and Nuthong, C. 2019. Vehicle
Classification with Deep Learning. In 2019 IEEE 4th
International Conference on Computer and Communication
Systems (ICCCS) (pp. 294-298).

[11] Xinchen Wang, Weiwei Zhang, Xuncheng Wu, Lingyun
Xiao, Yubin Qian, and Zhi Fang 2017. Real-time vehicle type
classification with deep convolutional neural networks. Journal of
Real-Time Image Processing, 16(1), p.5–14.
[12] SAN, W., LIM, M., and CHUAH, J. 2018. Efficient Vehicle
Recognition and Classification using Convolutional Neural
Network. In 2018 IEEE International Conference on Automatic

Control and Intelligent Systems (I2CACIS) (pp. 117-122).

[13] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.. (2015).
You Only Look Once: Unified, Real-Time Object Detection.

[14] Redmon, J., and Farhadi, A. 2017. YOLO9000: Better, Faster,
Stronger. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (pp. 6517-6525).

[15] Joseph Redmon, and Ali Farhadi 2018. YOLOv3: An
Incremental Improvement. CoRR, abs/1804.02767.

[16] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan
Mark Liao 2020. YOLOv4: Optimal Speed and Accuracy of
Object Detection. CoRR, abs/2004.10934.

[17] Lin, M., and Zhao, X. 2019. Application Research of Neural
Network in Vehicle Target Recognition and Classification. In
2019 International Conference on Intelligent Transportation, Big
Data & Smart City (ICITBS) (pp. 5-8).
[18] Armin, E., Bejo, A., and Hidayat, R. 2020. Vehicle Type
Classification in Surveillance Image based on Deep Learning
Method. In 2020 3rd International Conference on Information and
Communications Technology (ICOIACT) (pp. 400-404).

[19] Jocher, G., 2020. GitHub - ultralytics/yolov5: YOLOv5
in PyTorch > ONNX > CoreML > TFLite. [online] GitHub.
Available at: <https://github.com/ultralytics/yolov5> [Accessed
23 June 2022].

[20] Paszke, A. et al., 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., pp.
8024–8035. Available at: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-
library.pdf.

Acknowledgment	
	

I would like to acknowledge assistance provided by the
Faculty of Computing of General Sir John Kotelawala
Defence University. I would like to express my sincere
gratitude to my supervisors for their kind cooperation and
support in completing this research.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

150	

	
Author	Biographies	

	

AMRNVB Pethiyagoda is currently a BSc. Undergraduate in
Computer Engineering at the Faculty of Computing, General
Sir John Kotelawala Defence University. Current research is
about developing a Real-Time Vehicle Type Recognition
and License Plate Recognition using Deep Learning. His
research interests are Deep Learning, and Computer Vision.

Prof. TL Weerawardane is a Professor at Faculty of
Engineering, General Sir Kotelawala Defence University. He
has obtained BSc (Hons) in Electrical Engineering,
University of Moratuwa, Sri Lanka, MSc in Information &
Communication Technology and PhD in Mobile
Communication, University of Bremen, Germany. His
research interests are 3G/4G/5G Mobile Communication,
 Wireless Communication, Telecommunication and
Communication Networks, Industrial Internet of Things, Data
Science and Big Data Analytics, Artificial Intelligence and
Cyber Security and Stochastic Simulations and Statistical
Analysis.

DMR Kulasekara is a Senior Lecturer Grade II and Head of
Department of Computer Engineering at Faculty of
Computing, General Sir Kotelawala Defence University.
DMR Kulasekara obtained B.Sc (Hons) Specialized
Computational Physics from University of Colombo, BSc.
Information Technology (Specialized Computer Systems and
Networks) from Sri Lanka Institute of Information Technology
and M.Phil in Image processing & graphics from University
of Colombo School of Computing, Sri Lanka. His research
interests are Image Processing and Computer vision,
Computer graphics, Artificial Intelligence.
	
D.	M.W.	P	Maduranga	 is	a	Lecturer	 and	 Coordinator	 of	
Industrial	Training	at	Faculty	of	Computer	Engineering,	
General	Sir	 Kotelawala	Defence	University.	He	obtained	
his	 BSc.Eng	 (Hons)	 in	 Electronic	 Engineering	 degree	
from						Asian						 Institute						of	Technology	(AIT),	Thailand	
and	 MSc.Eng	 in	 Electrical	 and	 Electronic	 Engineering	
from	the	University	of	Peradeniya,	Sri	Lanka.	He	received	
Engineering	 Charter	 in	 Electronics	 and	
Telecommunication	 Engineering	 from	 the	 Engineering	
Council,	 the	UK	 in	2020.	His	 current	 research	 interests	
include	 Indoor	 Localization,	 Internet	 of	 Things	 and	
Wireless	Communications.	

	

