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Abstract:	 Modern	 intelligent	 transportation	 systems	
heavily	rely	on	vehicle	type	classification	technology.	Deep	
learning-based	vehicle	type	classification	technology	has	
sparked	 growing	 concern	 as	 Image	Processing,	 Pattern	
recognition,	 and	 Deep	 Learning	 have	 all	 advanced.	
Convolutional	 neural	work,	 particularly	 You	 Only	 Look	
Once	 (YOLO),	 has	 demonstrated	 significant	 benefits	 in	
image	classification	and	object	detection	during	the	past	
few	years.	Due	to	its	ability	to	forecast	objects	in	real-time,	
this	algorithm	increases	detection	speed.	High	accuracy:	
The	YOLO	prediction	method	yields	precise	results	with	
few	background	mistakes.	Additionally,	YOLO	is	aware	of	
generalized	 object	 representation.	 This	 method,	 which	
ranks	 among	 the	 best	 for	 object	 detection,	 performs	
significantly	better	than	R-CNN	techniques.	In	this	paper,	
YOLOv5	 is	 used	 to	 demonstrate	 vehicle	 type	 detection;	
YOLOv5	 m	 model	 was	 chosen	 since	 it	 suits	 mobile	
deployments,	 The	model	was	 trained	with	 a	 dataset	 of	
9200	 images,	 where	 2300	 images	 were	 allocated	 for	
each	 class	 with	 a	 variety	 of	 vehicles.	 Experimental	
results	 for	 100	 epochs	 with	 a	 batch	 size	 of	 16	 show	
mAP@.5	at	78.1%	and	mAP@.5:.95	at	71.7%	trained	and	
tested	on	four	vehicle	 classes.	
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1. Introduction	
 

Various advancements in the field of machine vision 
have fundamentally transformed the world. Technology 
has had an impact on various industries, including 
transportation. Because of population increase and human 
requirements, the use of vehicles has risen dramatically. As 
a result of the increased difficulties in controlling these 
vehicles, Intelligent Traffic Systems were developed, 
Vehicle Type Detection systems are critical components of 
intelligent traffic systems, and they have a wide range of 
applications [1], including highway toll collection, traffic 
flow statistics, and urban traffic monitoring. The 
development of autonomous driving technology has given 

people a new knowledge of high-level computer vision, and 
intelligent transportation and driverless driving 
technologies have drawn an increasing amount of interest. 
Vehicle Type Detection is a relatively significant 
technology in intelligent transportation and autonomous 
driving. There are already numerous methods for 
categorizing different types of vehicles thanks to the quick 
growth of large-scale data, computer hardware, and deep 
learning technologies. CNN, Faster RCNN, YOLO [2,18], 
and SSD have mostly used approaches that can be applied. 
This work uses the most recent real-time object detection 
technique of YOLO to address the drawbacks of existing 
object detection systems. 
 

YOLO is a state-of-the-art, real-time object detection 
system introduced in 2015 by [13]. YOLO proposes using 
an end-to-end neural network that provides predictions of 
bounding boxes and class probabilities all at once as 
opposed to the strategy used by object detection algorithms 
before it, which repurpose classifiers to do detection. R- 
CNNs are a type of two-stage detector and one of the early 
deep learning-based object detectors. The major issue with 
the R-CNN family of networks is their speed. However, 
though they frequently produce very accurate results, they 
were incredibly slow, averaging barely 5 FPS on a GPU. 
YOLO employs a one-stage detector technique to aid in 
accelerating deep learning-based object detectors. YOLO 
has the natural advantage of speed, better Intersection over 
Union in bounding boxes, and improved prediction 
accuracy compared to real-time object detectors. YOLO 
runs at up to 45 FPS, making it a far faster algorithm than 
its competitors. The GoogleNet architecture inspired 
YOLO’s architecture, YOLO’s architecture has a total of 
24 convolutional layers with 2 fully connected layers at the 
end. The main problems with YOLO, the identification of 
small objects in groups and the localization accuracy— 
were supposed to be addressed by YOLOv2 [14]. By 
implementing batch normalization, YOLOv2 raises the 
network's mean Average Precision. The addition of anchor 
boxes, as suggested by YOLOv2, was a considerably more 
significant improvement to the YOLO algorithm. As is well 
known, YOLO predicts one object for every grid cell. 
Although this simplifies the constructed model, it causes 
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problems when a single cell contains several objects 

because YOLO can only assign one class to the cell. 

By enabling the prediction of numerous bounding boxes 

from a single cell, YOLOv2 eliminates this restriction. The 

network is instructed to anticipate five bounding boxes for 

each cell to do this. YOLO9000 [14] was presented as a 

technique to discover more classes than COCO as an object 

detection dataset could have made possible, using a similar 

network design to YOLOv2. Although YOLO9000 has a 

lower mean Average Precision than YOLOv2, it is still a 

powerful algorithm because it can identify over 9000 

classes. YOLOv3 [15] was proposed to enhance YOLO 

with modern CNNs that utilize residual networks and skip 

connections. YOLOv2 employs the DarkNet-19 as the 

model architecture, but YOLOv3 uses the significantly 

more intricate DarkNet-53, a 106-layer neural network with 

residual blocks and up sampling networks, as the model 

backbone. With the feature maps being extracted at layers 

82, 94, and 106 for these predictions, YOLOv3's 

architectural innovation allows it to forecast at three 

different sizes. 

YOLOv4 [16] is built using CSPDarknet53 as the 

backbone, SPP (Spatial pyramid pooling), and PAN (Path 

Aggregation Network) for what is known as "the Neck," 

and YOLOv3 for "the Head" following recent research 

findings. 

This system uses the latest algorithm, YOLOv5, which uses 

the PyTorch [20] framework possessing many advantages 

such as smaller size, higher performance, and better 

integration than YOLOv4. 

2. Related	Works	
In the works of [2][6], the authors have presented 

experimental results that that YOLOv4 had better 

performance, F1score, precision, recall, and mAP values 

compared to other models in [2] and YOLOv3 has 

demonstrated better results in performance and accuracy 

than R-CNN and Fast R-CNN [6]. Yanhong Yang [3] uses 

the SSD algorithm to achieve vehicle classification and 

positioning, from the picture collection, picture calibration, 

model training, and model detection, several aspects of the 

detailed introduction of the vehicle classification process. 

PASCAL VOC dataset was used, and TensorFlow 

framework and SSD model with VGG16 model were used 

for model  training. In [2-9] [11][12]  Common vehicle 

categories are bus, car, truck, bus, and motorbikes. In [6-7] 

limitations were how to effectively detect vehicles in 

complex environments. Due to the limitations of hardware 

and time, in-depth research can be conducted in the future 

on the aspects of improving accuracy, improving detection 

accuracy, and improving calibration methods. A 

combination of YOLOv4 and DeepSORT has been used in 

[7] for vehicle detection and real-time object tracking, 

respectively. 

In [8] proposes a CNN model for vehicle classification 

with low-resolution images from a frontal perspective. The 

 
model was trained as a multinomial logistic regression 

where the cross-entropy of the ground truth labels, and the 

model's prediction estimates the error. Data augmentation 

was performed to prevent overfitting. A leaky rectifier 

activation function (LReLU) instead of (ReLU) was set up 

for the convolution output. However, [10] proposed a CNN 

architecture for vehicle type classification. The system 

requires  only  one  input,  a  vehicle  image.  The  model 

consists of two convolution layers, 1st, and 2nd layer. Two 

pooling layers, four activation functions (ReLU) The 3rd, 

4th, and 5th layers are fully connected. In [12] proposed the 

network developed has a total of 13 layers, 1 convolutional 

input layer, 11 intermediate layers including a combination 

of Rectified Linear Unit (ReLU) activation, convolutional, 

dropout, max pooling, flatten, and densely connected layers, 

and 1 SoftMax output layer.   In the works [6][11] the 

gathered  datasets  from  public  sources  such  as  COCO, 

OpenImage, PASCAL VOC, and some works their traffic 

data collected from camera sources. Dataset split was 80:20 

80% for training and 20% for testing [6][9]. 

In the works [17][12] The test data gave it had produced 

better accuracies with pictures with high definition while 

for the pictures with low definition, the recognition 

accuracy decreases. It is also observed that the probability 

of identifying small cars as medium-sized vehicles is only 

8.69%, and the probability of identifying large cars is lower, 

2.14% only in [17] and. Further improvements in prediction 

accuracy include training on more quality images to allow 

it to extract more features from the data and further dividing 

into more classes [12]. In [5][10] the authors wish to aim 

for better accuracies and stability by searching for suitable 

hyperparameters. Research gaps in [5-7] show the need to 

cover more variations of vehicles, Cars Image datasets need 

more data to classify, train, and real-time data analysis of 

the traffic and also more complex environmental conditions 

such as night-time and heavy rain. In [8-9][11] images that 

could be produced were replicated using data augmentation 

to improve precision and [4] stated image processing 

techniques were used to improve prediction accuracy. In 

[11] the authors have used Faster R-CNN, for shareable 

convolutional layers of RPN and detection network, the 

improved ZF net is applied on the PASCAL VOC2012 as 

the backbone network. 

In [12] the authors have developed a CNN, to detect types 

of vehicles commonly  found on the road for database 

collection purposes and improve the existing vehicle 

recognition for advanced applications. [10] To avoid 

overfitting Dropout method has been used, and the final 

layer is the predictor. TensorFlow was used to implement 

the CNN structures. The hyperparameters for the CNN 

model were also mentioned which can affect the 

performance of the CNN. The dataset mentioned was 

obtained from extracted frames of a video source. In works 

[11] RPN is trained by using Stochastic Gradient Descent 

(SGD). The method has better detection average precision 

for cars and trucks, while the average precision of minivans 
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and buses is lower. The result might be caused by a little 
training set of minivans and buses. 

Some knowledge gaps were identified in the 
literature review conducted; many authors have included 
foreign datasets, resulting in fewer accuracies when tested 
over real-time data. Some researchers are trying to improve 
the performance and recognition accuracies by considering 
images of different lighting, weather conditions, noise 
reduction, etc. which had been a challenge. According to 
the works in [2], it is clear that YOLO had outperformed 
other models such as Faster-RCNN and SSD. 

 
 

3. Design	Framework	and	Methodology	
 

This section follows the methodology applied to collecting 
and building the dataset needed for model train/test, 
exploring, and understanding the architecture behind the 
YOLOv5, and choosing the best approach for the desired 
output. 

 
A. Dataset 

In this experiment, the gathered dataset was from public 
sources such as Kaggle, Stanford Cars Dataset, vehicle 
images scraped from local automotive e-commerce 
websites in Sri Lanka, and traffic data collected from a 
video source with the following characteristics: Video 
duration: 300 seconds, resolution: 1080x2340 pixels, frame 
rate: 30 FPS. The dataset was prepared for six major types 
of vehicles, such as cars, buses, vans, trucks, motorbikes, 
and three wheels. These images are of different 
illumination, angle, and different vehicle models. The total 
dataset size is 9,200 images at a resolution of resized to 
160x120 pixels, with 2,300 images allocated for each class. 
The gathered dataset was annotated in YOLO format using 
a free open source called Labelling to graphically label the 
images. For each image file in the same directory, a text file 
with the same name is created in the YOLO labelling 
format. Each text file provides the object class, object 
coordinates, height, and width for the accompanying image 
file. The dataset was split into train and test, which are 80% 
(7,360 images) and 20% (1,840 images) respectively. 

 
Figure 1. Sample images from the training dataset 

B. YOLOv5 
The most cutting-edge object detection algorithm 

currently in use is the YOLOv5 [19], which Ultralytics 
introduced in June 2020. It is a novel convolutional neural 
network (CNN) that accurately detects objects in real-time. 
This method processes the entire image using a single 
neural network, then divides it into parts and forecasts 
bounding boxes and probabilities for each component. The 
predicted probability is used to weight these bounding 
boxes. In the sense that it only performs one forward 
propagation cycle through the neural network, the approach 
"only looks once" at the image before making predictions. 
After non-max suppression, it then provides discovered 
items. YOLOv5 consists of: 

- Backbone: New CSP-Darknet53 

- Neck: SPPF, New CSP-PAN 

- Head: YOLOv3 Head 
 

 

Figure 2. YOLOv5 architecture 
 
The overview of the YOLOv5 architecture is shown in 
Figure 2. To understand the classes of objects in the data, 
YOLOv5 models need to be trained using labelled data. 
The custom dataset that was prepared was of the YOLO 
format with one text file per image. The text file 
specifications are: 

• One row per object 

• Each row is class x_center y_center width height 
format. 

• Box coordinates must be in normalized xywh 
format (from 0 - 1). If your boxes are in pixels, 
divide x_center and width by image width, and 
y_center and height by image height. 

• Class numbers are zero-indexed (start from 0). 

YOLOv5 provides pre-trained models: 
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Figure 3. YOLOv5 models 

 
Larger models, such as YOLOv5x and YOLOv5x6, will 
almost always yield better results, but they contain more 
parameters, need more CUDA memory to train, and run 
more slowly. 
The YOLOv5 loss consists of three parts: 

• Classes loss (BCE loss) 

• objectless loss (BCE loss) 
• Location loss (CIoU loss) B���	=	C1B���	+	C2B���		+	C3B���	 (1) 

The objectness losses of the three prediction layers (P3, 
P4, P5) are weighted differently. The balance weights are 
[4.0, 1.0, 0.4] respectively. 

 
 
 

4. Model	Training	and	Results	
 

The model was trained on a system equipped with Ubuntu 
20.04.4 LTS, CUDA 10.2, 32 GB RAM, NVIDIA GeForce 

RTX 3090, Python 3.8, PyTorch 1.8.0. The yolov5m 
model was used for the training and test purpose, and a 
YAML file was defined to configure the paths for the 
dataset and the number of classes to train (Bus, Car, 
Motorbike, Van, Truck, Three-wheel). 

"���	=	4.0	∙	

"�����	

+	1.0	∙	"������	 +		0.4	∙	"���#�	
(2) 

YOLOv5 uses the following formula to calculate the predicted target information: 

��	=	(2	∙	,(��)	−	0.5)	+	0�	 (3) 

��	=	(2	∙	,(��)	−	0.5)	+	0�	 (4) 

��	=	��	 ∙	(2	∙	,(��))2	 (5) 

�ℎ	=	�ℎ	∙	(2	∙	,(�ℎ))2	 (6) 

 
The	build	targets	to	match	positive	samples:	Calculate	the	aspect	ratio	of	GT	and	Anchor	Templates	

��	=	1#	/1��	 (7) 

�ℎ	=	ℎ#	/ℎ��	 (8) 

 
Figure 4. Confusion Matrix 

 
However, it was trained  only  for 4  classes (Bus, Car, 
Motorbike, Three-wheel) despite having a few images of 
trucks and vans included. The model was trained for 100 
epochs with a batch size of 16, to visualize and track data in 
real-time wandb (Weights and Bias) Platform was used. 
 
during training, which allows for determining the epoch 
where the model starts to overfit. Figure 4 shows the 
confusion matrix, the only images that 
were incorrectly classified when the trained model was 
tested using the validation set were those in which a truck 
was misinterpreted for a bus and vice versa. This is because, 
when viewed from the front, a bus, and a truck both have 
characteristics in common. 
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The final metric, the mAP across test data, is generated by 
averaging all mAP values for each class in order to z 
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Figure 5. F1 Curve 

The weighted harmonic mean of a classifier's precision (P) and recall 
(R), considering =1, is known as the F-measure (F1 score). 
According to the greatest F1 value in Figure 5, the confidence value 
that maximizes the precision and recall is 0.254. (0.77). Figure 6 
presents the precision of each class obtained after the completion of 
training, it is the proportion of positive identifications which are 
actually correct, and Figure 7 presents the recall of each class, it is 
the proportion of actual positives which are identified correctly, the 
classes Bus, Car, Motorbike and Threewheel displayed satisfactory 
results although the classes Van and Truck had low results due to 
lack of images in the training dataset. Figure 8 shows the 
precision/recall curve generated from the validation set after training 
completes. 
 

 
Figure 6. Precision Curve 

 

 
Figure 7. Recall Curve 

Figure 8. Precision/Recall Curve 
 
 

Class  mAP 

Precision Recall mAP@.5 mAP@.5:.95 

Bus 96.8 95.9 99.2 96.9 

Car 94.2 96.8 98.5 93.2 

Motorbike 96.5 96.4 98.7 90.0 

Thre
e- 
whee
l 

96.7 98.0 98.9 95.0 

All 75.4 79.3 78.1 71.7 

 
Table 1. Model results of each class 

 
 

The mAP@.5 was 78.1% and mAP@.5:.95 was 71.7%. 
The training results under several epochs 30, 60, and 90 are 
provided as follows. At 30 epochs mAP@.5 was observed 
of  71.43%,  mAP@.5:.95  of  62.16%,  At  60  epochs 
mAP@.5 of 76.7%, mAP@.5:.95 of 68.62% and at 90 
mAP@.5 of 77.96% , mAP@.5:.95 at 71.2%. The best 
results were found at epoch 93 with a mAP@.5 at 78.066% 
and mAP@.5:.95 at 71.726%. The following experiment 
has shown satisfactory results, considering the knowledge 
gaps identified in the existing research. 

 
5.  Conclusion 

 
This paper proposes a model for categorizing vehicle types 
utilizing the most recent state-of-the-art object detection 
model, YOLOv5. With an overall mAP@.5 of 78.1 %, the 
model's promising results. Although the dataset contains 
9,200 images with 2,300 each, Bus, Car, Motorbike, and 
Three-wheel classes were actually trained, Van and Truck 
classes had very few data since some images had Vans and 
Trucks captured in the above 4 classes that were trained 
with, therefore they couldn’t be omitted out. However, this 
result of mean average precision obtained relatively low 
compared to the higher precisions obtained for classes Bus, 
Car, Motorbike, and Three wheel due to the classes Van 
and Truck. However, this can be avoided in the future by 
annotating those classes which will yield better results. The 
 
model will, nevertheless, be very successful at recognizing 
the type of car on the road, as shown by the results. Any 
future transportation system that must accurately identify 
the type of vehicle can easily incorporate it. While the 
classes can be further broken down into a more detailed 
manner, dividing classes of vehicles as SUVs, sedans, 
crossovers, jeeps, etc., Following the experiment, it was 
clear, that the model produced better results with respect to 
the precision and recall, and it is determined that the model 
could achieve best results, greater quality photos must be 
utilized to train the model to allow it to extract more 
features from the data. Hyperparameter tuning, a better 
dataset with high-resolution images, increasing the scope 
of Van and Truck training datasets to enhance precision. 
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