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Abstract:Location	 and	 number	 data	 of	
individual	 coconut	 trees	 are	 important	 for	
surveying	planting	areas,	predicting	 coconut	
yield,	 and	 managing	 and	 planning	 coconut	
plantations.	 This	 data	 had	 usually	 obtained	
through	manual	 investigation	 and	 statistics,	
which	 is	 time-consuming	 and	 tedious.	 Deep	
learning	 object	 recognition	 models,	 widely	
used	 in	 computer	 vision,	 can	 provide	 an	
opportunity	 to	 accurately	 identify	 individual	
coconut	trees,	which	is	essential	for	rapid	data	
acquisition	and	the	reduction	of	human	error.	
This	 study	 proposes	 an	 approach	 to	 identify	
individual	coconut	trees	and	map	their	spatial	
distribution	by	combining	deep	learning	with	
unmanned	 aerial	 vehicle	 (UAV)	 remote	
sensing.	 UAV	 remote	 sensing	 collected	 high-
resolution	true-colour	images	of	coconut	trees	
at	the	Mahayaya	Coconut	Model	Plantation	in	
Sri	Lanka.	An	image	dataset	of	deep	learning	
models	of	individual	coconut	trees	(ICTs)	had	
constructed	 by	 visual	 description	 and	 field	
survey	based	on	coconut	tree	images	captured	
by	UAV	remote	sensing.	YOLOv3	was	selected	
to	train,	validate	and	test	the	image	dataset	of	
coconut	 trees.	 The	 results	 show	 that	 the	
average	 accuracy	 of	 the	 YOLOv3	 model	 for	
validation	reaches	91.7%.	The	number	of	ICTs	
in	 the	 study	 area	 was	 calculated	 using	
YOLOv3,	 and	 their	 spatial	 distribution	 map	
was	 created	 using	 the	 non-maximum	
suppression	method	and	ArcGIS	software.	This	
study	 will	 provide	 basic	 data	 and	 technical	
support	 for	 smart	 coconut	 plantation	
management	 in	 Mahayaya	 coconut	 model	
plantation	 and	 other	 coconut-producing	
areas.	
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1. Introduction	

Smart	 plantation	 management	 requires	
accurate	 planting	 area	 survey,	 disease	 and	
pest	prevention	and	control,	and	data	on	the	
location	 and	 characteristics	 of	 individual	
coconut	 trees	 (ICT)	 in	 a	 plantation	 for	
coconut	yield	prediction.	Traditionally,	field	
surveys	 and	 statistics	 were	 used	 to	 collect	
this	 data,	 such	 as	 locations,	 spatial	
distribution,	 number	 of	 ICTs,	 etc.	 These	
surveys	 are	 time-consuming,	 labour-
intensive	and	expensive	but	fail	to	meet	the	
requirements	 of	 smart	 plantation	
management.	 There	 is	 a	 need	 to	 develop	 a	
fast,	cheap	and	accurate	methodology	for	ICT	
investigation	to	obtain	this	data.	
	
Remote	 sensing	 images	 of	 coconut	 trees	 in	
relatively	 large	plantations	can	be	captured	
by	 satellite	 or	 aerial	 photography.	 When	
using	 satellite	 remote	 sensing,	 cloudy	
weather	 is	 initially	 a	 major	 challenge,	 and	
due	 to	 the	 poor	 quality	 of	 images,	 coconut	
trees	 are	 difficult	 to	 detect.	 Limiting	 the	
spatial	 resolution	 of	 satellite	 imagery	 is	
another	 major	 challenge	 for	 accurately	
identifying	 ICTs.	 Aerial	 photography	 is	
taking	pictures	using	manned	or	unmanned	
aircraft.	 Manned	 aerial	 vehicles	 are	 not	
suitable	for	ICTs	detection	due	to	high	costs	
and	 difficult	 operations.	 Unmanned	 aerial	
vehicles	 (UAV)	 remote	 sensing	 is	 the	 best	
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option	to	accomplish	this	task.	Drones	are	a	
subset	of	UAVs	that	are	generally	very	small,	
light	 and	 inexpensive.	 A	 drone	 usually	 has	
one	 or	 more	 high-resolution	 cameras	 that	
can	capture	medium	to	high-quality	 images	
depending	on	the	height	it	flies	(Jintasuttisak,	
Edirisinghe	 &	 Elbattay	 2022).	 UAV	 remote	
sensing	 has	 automation,	 intelligence,	 and	
specialization	 advantages	 to	 quickly	 obtain	
space	 remote	 sensing	 information	 such	 as	
land,	 resources,	 environment,	 and	 events,	
and	conduct	real-time	processing,	modelling,	
and	 analysis	 of	 advanced	 emerging	 aerial	
remote	sensing	technology	solutions	(Li	&	Li	
2014).	Recently,	 it	has	been	widely	used	 in	
many	 practical	 fields,	 such	 as	 photometry,	
precision	 agriculture	 (Khanal,	 Fulton	 &	
Shearer	2017),	geohazard	assessment	(Li	&	
Li	 2014),	 forest	 fire	 detection	 (Ghali,	
Akhloufi	&	Mseddi	2022),	and	environmental	
monitoring	 (Wu,	 Shan,	 Lai	 &	 Zhou	 2022;	
Immerzeel	et	al.	2014).	UAV	remote	sensing	
has	 great	 potential	 to	 quickly	 and	
economically	acquire	image	data	of	coconut	
trees	in	plantations.	
	
In	the	recent	decade,	with	the	development	
of	computer	hardware	devices	and	the	rapid	
development	 of	 artificial	 intelligence	 (AI)	
technology,	 deep	 learning	 convolutional	
neural	 network	 (CNN),	 the	 core	 technology	
of	AI,	has	pioneered	new	object	recognition	
methods	 and	 feature	 extraction.	 In	 remote	
sensing	 images	 (Osco	 et	 al.	 2021;	 Zhang,	
Zhang	&	Du	2016).	Many	CNN	architectures	
have	been	proposed	for	object	recognition	in	
computer	 vision	 and	 image	 analysis,	 and	
they	 are	 divided	 into	 two	 categories,	 two-
stage	 and	 one-stage	 models.	 (Girshick,	
Donahue,	Darrell	&	Malik	2014)	proposed	an	
R-CNN	 (Region-based	Convolutional	Neural	
Network)	two-object	detection	model	based	
on	classification	problems.	Based	on	R-CNN,	
fast	RCNN	and	fast	R-CNN	are	then	proposed	
to	 improve	 performance	 and	 accuracy.	
(Redmon,	Divvala,	Girshick	&	Farhadi	2016)	
single-stage	based	object	recognition	model	
YOLO	 (You	 Look	 Only	 Once).	 The	 YOLO	
model	not	only	simplifies	the	neural	network	

size	but	also	improves	the	recognition	speed	
while	improving	the	recognition	accuracy.	(K	
et	 al.	 2022)	 proposed	 a	 pipeline	 based	 on	
YOLOv2	 to	 perform	 fast	 multiscale	 object	
detection	 in	 large-scale	 satellite	 imagery.	
(2021)	 (Osco	 et	 al.	 2021)	 present	 a	
comprehensive	 review	of	 the	 fundamentals	
of	 deep	 learning	 related	 to	 UAV-based	
imagery,	 providing	 a	 key	 reference	 for	
integrating	 deep	 learning	with	UAS	 remote	
sensing	for	ICT	detection.	
	
More	 recently,	 (dos	 Santos	 et	 al.	 2019)	
proposed	 and	 evaluated	 the	 use	 of	 CNN-
based	methods	 combined	with	 high	 spatial	
resolution	 UAV	 imagery	 in	 red-green-blue	
(RGB)	 to	 identify	 legally	 protected	 tree	
species.	 Three	 state-of-the-art	 object	
detection	 methods	 were	 evaluated:	 fast	 R-
CNN,	YOLOv3	and	RetinaNet.	RetinaNet	gave	
the	most	 accurate	 results,	 with	 an	 average	
accuracy	 of	 92.64%.	 Satellite	 imagery	
analysis	 by	 (Brandt	 et	 al.	 2020)	 found	
isolated	 tree	 canopies	 over	 a	 large	 area	 of	
West	Africa.	Their	results	show	that	mapping	
the	location	and	size	of	each	tree	worldwide	
can	 be	 done	 quickly	 with	 some	 limitations	
(Brandt	et	al.	2020;	Hanan	&	Anchang	2020).		
(Safonova,	 Guirado,	 Maglinets,	 Alcaraz-
Segura	&	Tabik	 2021)	 used	masked	R-CNN	
and	UAV	 imagery	 for	olive	 tree	canopy	and	
shadow	segmentation	to	further	estimate	the	
biomass	of	individual	trees.	(Sun	et	al.	2022)	
applied	 an	 end-to-end	 tree	 count	 deep	
learning	 framework	 (CMask	 R-CNN)	 to	
regional	 tree	 recognition	 by	 calculating	 the	
tree	population	in	the	subtropical	metropolis	
Guangzhou	 and	 representing	 the	 crown	 of	
each	 tree.	 (Hu	 et	 al.	 2022)	 presented	 a	
pipeline	 for	 tracking	 and	 clustering	 259	
peach	tree	crowns	based	on	UAV	images	of	a	
peach	 orchard	 in	 Southeast	 China	 and	
constructed	 conditional	 generative	
adversarial	networks	(cGANs)	to	extract	the	
crown	area.	The	results	of	 	 (Yu	et	al.	2022)	
showed	 that	 the	 mask-R-CNN	 model	
achieved	 the	 highest	 accuracy	 (F1	 score	 =	
94.68%)	 for	 identifying	 a	 single	 tree	
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compared	to	the	local	maxima	algorithm	and	
marker-limited	watershed	segmentation.	
	
Motivated	by	the	great	progress	in	single	tree	
detection	by	deep	learning	and	UAV	remote	
sensing,	we	proposed	an	 approach	 to	build	
an	 accurate	 Individual	 Coconut	 Tree	 (ICT)	
detection	model	by	combining	deep	learning	
with	UAV	 remote	 sensing	 images	 to	 fill	 the	
gap	in	the	above	studies.	With	this	model,	the	
location	and	spatial	distribution	of	ICTs	can	
be	 quickly	 and	 accurately	mapped,	 and	 the	
number	 of	 ICTs	 can	 also	 be	 quickly	
calculated.	We	envision	that	state-of-the-art	
deep	 learning	 methods	 can	 detect	 ICTs	 in	
high-resolution,	true-colour	images	with	low	
cost,	 high	 accuracy,	 and	 high	 performance.	
Coconut	 trees	 are	 selected	 as	 a	 case	 study	
and	 will	 be	 empirically	 determined	 as	 a	
deep-transfer	 learning	 model	 for	 training	
and	 validation	 to	 test	 the	 YOLOv3	
hypothesis.	 It	 aims	 to	 provide	 reliable	 and	
timely	 baseline	 data	 and	 technical	 support	
for	 intelligent	 plantation	 management	 and	
precision	farming	development.	
	
More	 specifically,	 three	main	 contributions	
were	 reported	 in	 this	 paper.	 First,	 high-
resolution	images	gagged	by	the	UAV	sensor	
were	 set	 for	 a	 sample	 set	 of	 tree	 images	of	
individual	 coconut	 trees.	 Second,	 using	 the	
new	data,	the	yolov3	model	was	trained	and	
evaluated	 for	 realizing	 accurate	 and	 fast	
detection	 of	 ICTs.	 Third,	 a	 thematic	 map	
showing	 the	 location,	 spatial	 distribution,	
and	the	number	of	the	ICTs	in	the	large-scale	
coconut	plantations	of	the	study	area.	It	can	
provide	important	reference	information	for	
precision	plantation	management.	
	

2. Materials	and	Methods		
A. Study	area		

A	large	coconut	plantation	is	selected	as	the	
experimental	 study	 area.	 It	 is	 located	 in	
Makandura,	 Gonawila.	 (Figure	 1).	 The	
coconut	tree	(Cocos	nucifera)	is	a	member	of	
the	 palm	 tree	 family	 (Arecaceae)	 and	 the	
only	 living	 species	 of	 the	 genus	 Cocos.	 The	

coconut	 tree	provides	 food,	 fuel,	 cosmetics,	
folk	medicine	and	building	materials,	among	
many	 other	 uses.	 A	 mature	 coconut	 tree’s	
height	 can	 reach	 20-22	meters	 on	 average,	
and	its	crown	diameter	generally	goes	to	8-9	
meters.	 Thus,	 it	 can	 be	 recognized	 in	 high-
resolution	 UAV-based	 images	 by	 visual	
interpretation.	
	

	
Figure	1.	Overview	of	the	experimental	study	

area.	The	location	map	shows	the	study	
area	in	a	red	rectangle	

	
Therefore,	 detecting	 ICTs,	 mapping	 their	
location	 and	 spatial	 distribution,	 and	
counting	their	planting	area	and	the	number	
of	 trees	 are	 important.	 It	 is	 desired	 to	
provide	reference	information	for	cultivation	
area	 investigation,	 yield	 prediction,	 and	
smart	plantation	management	and	plan	in	Sri	
Lanka.	

B. Our	proposed	approach	 for	 individual	
coconut	tree	detection	and	mapping.		

This	 study	 proposed	 an	 approach	 for	
detecting	 ICTs,	 mapping	 their	 spatial	
distribution,	and	counting	their	planting	area	
and	 number	 by	 integrating	 deep	 transfer	
learning	 of	 YOLOv3	 with	 high-resolution	
low-altitude	 UAV	 remote	 sensing	 images.	
The	workflow	 of	 the	 proposed	 approach	 is	
illustrated	 in	 Figure	 2,	 containing	 six	 steps	
shown	as	follows.	

i. Capturing	 and	 processing	 UAV	
remote	sensing	images;	

ii. Creating	 a	 dataset	 of	 Individual	
Coconut	 Tree	 Image	 Samples	
(ICTIS);	



 

 

195 

iii. Training,	 validating,	 and	 testing	
the	YOLOv3	model;	

iv. Evaluating	 the	 accuracy	 and	
performance,	 CocoNet,	 for	 the	
detection	of	ICTs	will	be	obtained;	

v. Mapping	 the	 location	 and	 spatial	
distribution	 of	 ICTs	 using	 the	
predicted	results	of	CocoNet;	

vi. Counting	 the	 planting	 area	 and	
the	number	of	ICTs	

	
To	test	and	validate	our	proposed	approach,	
the	 coconut	 trees	 were	 selected	 as	 the	
example	targets	to	carry	on	the	study	on	ICT	
detection	 and	 their	 spatial	 distribution	
mapping.	 The	 main	 methods	 and	 critical	
steps	of	the	workflow	are	explained	in	detail	
in	 Figure	 2.	

	

Figure	 2.	 Workflow	 chart	 of	 our	 proposed	
approach	 to	 detecting	 and	 mapping	
individual	coconut	trees	integrated	YOLOv3	
with	UAV	remote	sensing.	

	
1)	 Capturing	 and	 processing	 UAV	 remote	
sensing	 images:	 	 The	 DJI	 M300	 RTK	
multispectral	 drone	 was	 used	 as	 a	 UAV	
system	 to	 capture	 low-altitude	 remote	
sensing	images,	equipped	with	1/2.3"	CMOS,	
12	MP,	including	one	RGB	sensor	for	visible	
light	imaging	and	five	monochrome	sensors	
for	multispectral	imaging	(Blue,	Green,	Red,	
Red-Edge	 and	 Near-Infrared	 bands).	 It	
integrates	RTK-enabled	GNSS,	including	GPS	
and	 Galileo.	 So,	 it	 can	 capture	 high-quality	
multi-band	 remote	 sensing	 images	without	
ground	 control	 points	 required	 in	 the	
traditional	aerial	survey.	Furthermore,	it	can	
provide	 efficient	 tools	 for	 farmers	 in	

precision	 agriculture,	 significantly	
improving	 the	 efficiency	 of	 environmental	
data	acquisition.	To	obtain	high-quality	UAV	
raw	data,	 aerial	 photography	 tasks	 need	 to	
be	planned	before	take-off.	
	
A	flight	altitude	of	150	m	was	set	to	capture	
high-quality	 UAV	 raw	 data	 with	 a	 spatial	
resolution	 of	 5	 cm,	 with	 60%	 heading	 and	
lateral	 overlaps.	 Figure	 3	 shows	 some	
examples	 of	 the	 raw	 true-colour	 images	
collected	by	UAV	aerial	photography,	which	
were	used	later	to	construct	a	dataset	of	RGB	
true-colour	image	samples	of	ICTs.	
	

	
Figure	3.	Examples	of	the	raw	true-colour	images	

captured	by	UAV	remote	sensing.	
	
The	original	images	obtained	by	UAV	remote	
sensing	 on	 date	 was	 pre-processed	 to	
generate	a	digital	orthographic	mosaic	image	
model	of	the	study	area.	The	pre-processing	
steps	mainly	include:	
	
i. Confirming	the	 integrity	of	original	
image	 data,	 including	 camera	
parameters	 in	 the	 segment	 and	
segment	 attributes	 and	 GNSS	
information;	

ii. Establishing	 engineering	 files	 and	
importing	 original	 image	 data,	
creating	engineering,	adding	 image	
data,	 setting	 image	 attributes,	 and	
camera	model	parameters	in	the	Pix	
4D	Mapper	software;	

iii. Automatic	 processing	 of	 the	 UAV	
images,	 including	 initialization,	
point	cloud	encryption,	regional	3D	
reconstruction,	 and	 digital	
orthographic	 image	 model	
generation	
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The	digital	orthographic	mosaic	image	model	
of	 the	 study	 area	 generated	 through	 the	
above	 processes	 is	 shown	 in	 Figure	 4.	 It	
spent	about	60	minutes,	 two	 flights	of	UAV	
aerial	 photography,	 completing	 the	 task	 of	
capturing	 remote	 sensing	 images	 in	 the	
entire	 study	 area.	 During	 this	 task,	 the	
battery	 onboard	 needed	 to	 be	 replaced	
multiple	 times,	 causing	 the	 flight	 to	 start	
from	a	different	place	and	thus,	some	images	
of	different	extent	areas	would	be	captured	
and	 the	 study	 area	 is	 consist	 with	 3600	
coconut	trees	and	the	area	covered	was		0.3	
km2.	

	
Figure	4.	Digital	mosaic	orthographic	image	of	

the	study	area.	
	

2)	 Construction	 of	 a	 dataset	 of	 individual	
coconut	tree	 image	samples:	 	The	processed	
mosaic	orthographic	images	of	coconut	trees	
were	 imported	 into	ArcGIS	 Pro	 2.8,	 and	 its	
deep	 learning	 module	 was	 used	 to	 label	
individual	 coconut	 tree	 samples.	 After	
labelling,	 cropping,	 and	 exporting,	 an	
individual	 coconut	 tree	 detection	 dataset	
based	on	 a	UAV	 remote	 sensing	 image	was	
generated	and	named	the	Individual	Coconut	
Tree	 Image	 Samples	 (ICTIS)	 dataset.	 The	
steps	 are	 as	 follows.	 Firstly,	 we	 created	 a	
shapefile	of	the	surface	element	class	vectors	
in	ArcGIS	Pro,	 drew	 circle	 elements	 for	 the	
coconut	 sample	 annotations	 manually	
according	 to	 the	 records	 of	 field	
investigation,	 added	 a	 class	 file	 in	 the	
properties	 table	 of	 surface	 element	 class	
vector,	and	identified	the	individual	coconut	
tree	 sample’s	 category.	 The	 annotation	
example	is	shown	in	Figure	5a.	Secondly,	the	
polygon	feature-class	file	was	used	to	export	
the	 images	 and	 their	 corresponding	
annotated	 sample	 data,	 suitable	 for	 the	

subsequent	 research	 requirements.	 The	
digital	orthographic	image	of	the	study	area	
was	cropped	into	clip	images	with	the	size	of	
640	 ×	 640	 and	 zero	 overlaps.	 The	 images	
without	 coconut	 tree	 annotations	 were	
excluded	 when	 exporting	 in	 ArcGIS	 Pro.	
Lastly,	 a	 dataset	 of	 ICTIS	 was	 created	
according	to	the	PASCAL	VOC	(Everingham,	
van	Gool,	Williams,	Winn	&	Zisserman	2010)	
data	 format	 by	 combining	 all	 exported	 clip	
images,	with	a	total	of	570	images.	The	label	
example	 of	 the	 clip	 images	 of	 the	 dataset	
obtained	 after	 cropping	 and	 exporting	 is	
shown	 in	 Figure	 5b.	 The	 actual	 label	 of	 an	
individual	 coconut	 tree	 is	 the	 minimum	
bounding	 rectangle	 of	 the	 drawn	 circle,	
which	 will	 be	 the	 ground	 truth	 for	 model	
training	and	validation	in	deep	learning.	
	

	

Figure	5.	Annotation	samples	(a)	 in	ArcMap	and	
label	samples	(b)	of	the	dataset	of	individual	
coconut	 tree	 image	 samples	 in	 the	 study	
area.	

	
3)	 YOLOv3	 deep	 learning	 object	 detection	
model:	 	 Based	 on	 the	 dataset	 ICTIS,	 the	
single-stage	 object	 detection	 algorithm	 of	
YOLOv3	 (You	 Only	 Look	 Once)	 was	
empirically	 selected	 to	 train,	 validate,	 and	
test	 the	 model	 for	 individual	 coconut	 tree	
detection.	YOLOv3	is	the	third	version	of	the	
YOLO	model	family	and	has	been	widely	used	
in	object	detection	tasks	such	as	pedestrians,	
vehicles,	 and	 ships.	 The	 YOLO	 model	 is	
divided	into	three	parts:	backbone	network	
(Backbone),	neck	network	(Neck),	and	head	
network	 (Head)	 (Figure	 6).	 A	 backbone	
network	is	used	to	extract	features	from	the	
input	 data;	 the	 neck	 network	 collects	 and	
distributes	 features	 of	 different	 scales;	 the	
head	 network	 is	 used	 to	 judge	 the	
positioning	and	category	of	the	target	box.	In	
YOLOv3,	 the	 backbone	 network	 adopts	 a	
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cross-stage	local	network	(Wang	et	al.	2020)	
to	solve	the	problem	of	gradient	information	
duplication	 and	 gradient	 disappearance	 of	
network	 optimization;	 it	 adopts	 a	 path	
aggregation	network	 (Liu,	Qi,	Qin,	 Shi	&	 Jia	
2018)	and	spatial	pyramid	pooling	network	
(He,	 Zhang,	 Ren	 &	 Sun	 2015).	 As	 a	 neck	
network,	 the	model	 enhances	 the	detection	
of	 objects	 with	 different	 scaling	 scales	 to	
identify	 the	 same	object	 of	 different	 scales;	
the	 head	 network	 uses	 the	 same	 detection	
layer	 as	 YOLOv1	 and	 YOLOv2,	 applies	 the	
best	 anchor	 box	 to	 the	 feature	 map,	 and	
generates	 the	 final	 output	 vector	 with	
category	 probability,	 object	 score,	 and	
prediction	bounding	box.	
	

	
Figure	6.	The	YOLOv3	model	structure.	

	
The	YOLOv3	model	was	used	for	training	and	
validation.	 This	model	was	 named	CocoNet	
for	short.	Finally,	CocoNet	was	used	to	detect	
ICTs	in	the	experimental	area,	and	its	spatial	
distribution	map	was	made.	
	

C. Evaluation	metrics.		
Model	evaluation	 is	very	 important	 in	deep	
learning.	 Only	 by	 choosing	 an	 appropriate	
evaluation	method	can	we	quickly	discover	
potential	 problems	 with	 the	 model	 in	 the	
training	 process	 and	 find	 suitable	 ways	 to	
optimize	the	model.	The	confusion	matrix	is	
not	only	a	standard	format	for	evaluating	the	
accuracy	but	also	a	visualization	tool	capable	
of	using	special	matrices	to	present	the	effect	
of	model	performance.	The	confusion	matrix	
consists	 only	 of	 positive	 and	 negative	
examples.	 Table	 1	 shows	 the	 confusion	
matrix	 for	 a	 classic	 example	 of	 binary	
classification.	 Each	 column	 represents	 a	

predicted	value,	and	each	row	represents	an	
actual	category.	
	
Table	1.	Confusion	matrix	of	binary	classification	
of	artificial	intelligence.	

Confusion	matrix	
Predicted	label	
true	 false	

Actual	
label	

positive	 TP*	 FP	
negative	 TN	 FN	

	
*	 TP	 (True	 Positive)	 means	 that	 the	
actual	category	of	the	sample	is	positive,	
and	the	result	predicted	by	the	model	is	
also	positive.	TN	(True	Negative)	means	
that	the	actual	category	of	the	sample	is	
negative,	and	the	model	predicts	it	to	be	
negative.	FP	(False	Positive)	means	that	
the	 actual	 category	 of	 the	 sample	 is	
negative,	but	the	model	predicts	it	to	be	
positive.	FN	(False	Negative)	means	that	
the	 actual	 category	 of	 the	 sample	 is	
positive,	 but	 the	 model	 predicts	 it	 as	
negative.	
	

The	present	study	is	an	example	of	a	binary	
classification.	We	evaluated	 the	accuracy	of	
the	 trained	 YOLOv3	 model	 using	 the	
precision,	 recall,	 F1	 score,	 and	 average	
precision(AP).	
	
1)	Precision	and	recall:		According	to	Table	1,	
the	precision	 (P)	and	recall	 (R)	metrics	are	
defined	 as	 Equations	 1	 and	 2,	 respectively.	
Precision	 indicates	 the	 percentage	 of	
samples	that	were	actually	positive	out	of	all	
results	 that	 were	 predicted	 to	 be	 positive	
samples.	 The	 recall	 indicates	 the	 ratio	 of	
samples	predicted	positive	by	 the	 classifier	
to	 the	 actual	 number	 of	 positive	 samples.	
Also	 called	 sensitivity,	 it	 represents	 the	
classifier's	 sensitivity	 to	 the	 category	 of	
positive	examples.	
	

P	=
TP

(TP+FP)	 (1)	

R =
TP

(TP + FN)
	 (2)	
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Where,	 P	 and	 R	 denote	 the	 precision	 and	
recall,	 respectively.	TP,	 FP,	 and	FN	 indicate	
the	same	meanings	as	in	Table	1.	
	
2)	 F1-score:	 	 The	 F1-score	 is	 the	 harmonic	
mean	 of	 precision	 and	 recall,	 taking	 both	
metrics	into	account	in	Equation	3.	
	

B&	=
2	×	P	×	R
(P+R) 	 (3)	

	
Where,	 F1	 denotes	 the	 F1-score;	 P	 and	 R	
denote	the	precision	and	recall,	respectively.	
	
3)	Average	precision:		In	the	domain	of	deep	
learning	 object	 recognition,	 Average	
Precision	 (AP)	measures	how	well	 a	model	
recognizes	 a	 particular	 category	 and	 is	
represented	 by	 a	 Precision-Recall	 Curve	
(PRC)	 plot	 (Figure	 7).	 The	 PRC	 chart	 is	 a	
horizontal	recall	and	vertical	precision,	and	
is	 a	 monotonically	 decreasing	 curve.	 The	
area	 under	 the	 PR	 curve	 for	 a	 particular	
category	 is	 defined	 as	 AP	 as	 defined	 in	
Equation	4.	
	

C#	=	D E(F)G(F)
&

'
	 (4)	

	
Where,	AP	is	the	average	precision	and	f(c)	is	
the	precision	recall	curve	for	category	c.	The	
closer	the	curve	is	to	the	upper	right	corner	
in	the	PR	plot,	the	more	accurate	the	model	
is.	In	addition	to	using	the	model	to	estimate	
the	area	under	the	curve,	we	can	also	draw	a	
line	with	a	slope	of	1	on	the	PRC	plot	and	the	
intersection	of	this	line	with	the	PR	curve	is	
the	equilibrium	point	F1.	This	score	is	known	
as	F1	score.	
	

	
Figure	7.	Precision-Recall	Curves	

	
4)	Average	precision:		In	object	detection,	the	
strength	 of	 a	 representation	 model	 is	 not	
only	the	prediction	probability	of	categories,	
but	 also	 the	 accuracy	 of	 the	 positioning	 of	
prediction	 boxes.	 The	 Intersection	 over	
Union	 (IoU)	 ratio	 is	 commonly	 used	 as	 the	
matching	 degree	 evaluation	 metric	 for	
predicted	bounding	boxes	and	ground	truth	
boxes	in	a	data	set	(Figure	8),	and	their	area	
intersection	 and	 intersection	 ratio	 are	
calculated	according	 to	 the	Equation	5.	The	
higher	the	ratio	value,	the	better	the	match.	
The	ideal	result	is	a	perfect	overlap	between	
the	prediction	box	and	the	ground	truth	box	
that	achieves	a	ratio	of	1.	
	

"H%	=
Area(B)	∩	Area(G)
Area(B)	∪	Area(G)	 (5)	

	
Where,	The	area	of	the	prediction	bounding	
box	is	shown	by	Area(B)	,	and	The	area	of	the	
ground	truth	box	is	shown	by	Area(G).	
	

	
Figure	8.	Intersection	over	the	union	of	ground	

truth	and	prediction	bounding	box.	
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The	threshold	criterion	for	positive	is	IoU	>	
0.5,	 otherwise	 negative.	 Therefore,	 AP@0.5	
used	below	represents	the	average	precision	
when	IoU	>	0.5	and	AP@0.5:0.95	used	below	
represents	the	average	accuracy	when	IoU	is	
between	 0.5	 and	 0.95.	 Furthermore,	
inference	time	is	also	an	important	metric	for	
evaluating	 the	 model's	 ability	 in	 object	
detection.	 Frames	 per	 second	 (FPS)	 is	
commonly	used	to	measure	model	inference	
speed.	
	
5)	Experimental	environment	and	setup:		The	
experimental	platform	was	configured	with	
the	following:		
	

• AMD	 RYZEN	 7	 5800X	 CPU	 with	
3.8GHz	processor	

• MSI	RTX	3050	VENTUS	8GB	GPU	
independent	graphics	card	

• 64-bit	Windows	10	
• Python	3.7,	
• PyTorch	1.8.1	

	
By	cross-validation,	513	(90%)	images	were	
randomly	selected	as	the	training	set	and	28	
(5%)	images	were	selected	as	the	validation	
set.	 The	 remaining	 28	 (5%)	 images	 were	
used	as	a	test	set	to	test	the	final	model.	
	
3. Result	and	Discussion	

	
A. Model	Characteristics		
1)	Accuracy	of	 the	YOLOv3	model:	 	 Figure	9	
shows	 the	 average	 precision	 (AP@0.5)	
variation	 of	 the	 YOLOv3	 model	 during	 the	
training	process	from	20	to	120	epochs.	With	
the	 help	 of	 the	 pre-trained	model	 weights,	
the	model	can	achieve	high	accuracy	quickly.	
After	75	epochs	of	training,	the	AP	of	YOLOv3	
reaches	the	fitting	state	and	remains	stable.	
	

	
Figure	9.	Average	precision	(AP)	variation	of	

each	YOLOv3	model	(20~120	epochs).	
	
By	 comparing	 the	 accuracy	 evaluation	
metrics	 of	 the	 model	 in	 Table	 2,	 it	 can	 be	
found	that	YOLOv3	accuracy	performance	is	
suitable	for	ICT	detection.	
	
Table	2.	Results	of	the	evaluation	metrics	of	the	
YOLOv3	model.	
	

A. M
odel	

B. P
recisio
n	

C. R
ecall	

D. F
1	

Score	

E. A
P@0.5	

F. Y
OLOv3	

G. 0
.871	

H. 0
.859	

I. 0
.867	

J. 0
.917	

*AP@0.5	means	 the	average	precision	
when	the	Intersection	over	Union	>	0.5	
	

2)	Training	and	validation	loss	of	the	YOLOv3	
model:	 	 Based	 on	 the	 training	 and	 test	 loss	
curves	in	Figure	10,	the	model	has	performed	
well,	 and	 there	 is	 no	 overfitting.	 If	 the	
training	loss	value	is	close	to	the	value	of	the	
validation	 loss,	 the	model	 is	not	overfitting.	
The	lower	the	loss,	the	better	the	accuracy	of	
the	model.	

	

Figure	10.	Training	and	validation	losses	curve	of	
the	YOLOv3	model.	
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B. Statistics	 and	mapping	 of	 the	 individual	

coconut	trees	
A	 thematic	 map	 (Figure	 11)	 was	 made	 to	
show	the	spatial	distribution	of	the	detected	
ICTs	using	 the	retrained	YOLOv3	model.	As	
shown	 in	 the	 two	 inserted	 square	 boxes	 of	
Figures	 11b	 and	 11c,	 it	 can	 be	 found	 that	
different	 sizes	 of	 ICTs	 are	 almost	 detected	
accurately,	 indicating	 that	 CocoNet	 could	
have	a	high	enough	accuracy	to	complete	the	
task	of	individual	coconut	tree	detection.	It	is	
necessary	 to	 test	 further	 and	 validate	 the	
feasibility	 of	 the	 application	 of	 CocoNet	 in	
other	coconut	plantations.	
	
The	original	square	labels	detected	by	using	
CocoNet	 were	 converted	 into	 the	
corresponding	 circles	 to	 reduce	 the	
overlapping	effect	on	the	map.	The	planting	
area	and	the	number	of	the	detected	ICTs	in	
the	 experimental	 study	 area	 were	 counted	
with	the	ArcGIS	Pro	software	and	shown	in	
the	thematic	map.	The	results	show	that	the	
cultivated	 area	 is	 297,156.83	 m2,	 and	 the	
total	number	of	coconut	trees	is	3,306.		
	
C. Limitations	and	future	work	
Despite	 a	 lot	 of	 hard	work,	 there	 are	 some	
limitations	in	dataset	creation,	deep	learning	
model	 selection	 and	 design,	 and	
hyperparameter	 optimization.	 First,	
although	 we	 acquired	 both	 RGB	 and	
multispectral	 images	 using	 UAV	 remote	
sensing,	 only	 the	 UAV-based	 RGB	 images	
were	used	to	construct	 the	 ICTIS	dataset	 in	
the	 present	 study.	 The	 UAV-based	
multispectral	 images	will	 be	 used	 in	 future	
studies	 to	 improve	 the	 model's	 accuracy.	
Other	 UAV-based	 high-resolution	 images	
such	 as	 hyperspectral	 or	 LiDAR	 imagery	
would	be	better	options	for	the	detection	of	
ICTs	 because	 their	 more	 spectral	
information	 or	 highly	 effective	 point	 cloud	
data	(Hu	et	al.	2022;	Jaskierniak	et	al.	2021)		
could	 reveal	 more	 detailed	 features	 and	
improve	the	performance	of	CNNs	that	helps	
distinguish	 ICTs	 from	 the	 images.	 Second,	
more	CNN	models	such	as	Faster	R-CNN,	U-

Net,	 SDD,	 and	Mask	 RCNN	 (Yu	 et	 al.	 2022;	
Safonova	et	al.	2021;	dos	Santos	et	al.	2019)	
should	 be	 trained	 and	 tested	 to	 obtain	 a	
better	model	to	fulfil	the	task.	The	structure	
of	 the	 model	 could	 even	 be	 modified	 to	
improve	 accuracy	 and	 performance	 for	
better	 precise	 applications	 of	 smart	
plantation	 management.	 Third,	 data	
augmentation	 and	 hyperparameter	
optimization	need	 to	be	 further	carried	out	
to	obtain	a	more	robust	performance	model.	
These	all	deserve	further	research.	

Figure	 11.	 A	 thematic	 map	 shows	 the	 spatial	
distribution	 of	 the	 detected	 individual	
Coconut	 trees	 using	 the	 YOLOv3	 and	 their	
planting	area	and	number	information	with	
two	enlarged	square	regions	inserted.	

	
In	the	future,	our	proposed	approach	can	be	
used	 to	 obtain	 these	 kinds	 of	 spatial	 and	
attribute	 data	 about	 the	 individual	 coconut	
trees	 in	 a	 plantation.	 These	 data	 could	 be	
easily	 integrated	 into	 a	 smart	 plantation	
management	system	that	could	provide	fast	
growth	 monitoring	 of	 individual	 coconut	
trees,	 accurate	 yield	 estimation	 of	 the	
coconut,	 real-time	 disease	 prevention	 and	
control,	 and	 precision	 cultivation	 and	
management.	 Town-level,	 county-level	 and	
city-level	thematic	maps	of	ICTs	will	be	made	
through	 our	 proposed	 approach	 in	 the	
coming	study.	The	coconut	yield	estimation	
based	on	the	thematic	map	of	ICTs	will	be	an	
important	topic	in	our	future	research.	
	
4. Conclusion	
In	 the	 present	 study,	 we	 proposed	 a	 deep	
learning	approach	to	detecting	and	mapping	
individual	 coconut	 trees	 in	 UAV	 remote	
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sensing	imagery,	taking	the	coconut	trees	in	
Mahayaya	Coconut	Model	Garden,	Sri	Lanka,	
as	 an	 example.	 UAV	 remote	 sensing	
technology	 was	 applied	 to	 acquire	 high	
spatial-resolution	 images	of	 the	 study	 area.	
These	images	were	pre-processed	in	the	Pix	
4D	Mapper	software.	A	dataset	of	individual	
coconut	 tree	 image	 samples	 (ICTIS)	 was	
constructed	 through	 visual	 interpretation	
and	 the	 deep	 learning	 tools	 in	 the	 ArcGIS	
software	 combined	 with	 fieldwork	
investigation.	 YOLOv3	 object	 detection	
model	 was	 used	 to	 train	 and	 validate	 the	
dataset.	The	evaluation	results	show	that	the	
model	 achieves	 relatively	 high	 detection	
accuracy.	 The	 trained	 YOLOv3	 model,	
namely	CocoNet,	was	thus	selected	to	detect	
and	 post-process	 ICTs	 in	 the	whole	mosaic	
orthographic	image	of	the	study	area.	Finally,	
a	 spatial	 distribution	 thematic	map	 of	 ICTs	
was	made	according	to	the	detection	results.	
This	 study	 provides	 reference	 information	
for	 related	 research	 and	 smart	 plantation	
management.	
	
References		

	
Brandt,	 M,	 Tucker,	 CJ,	 Kariryaa,	 A,	
Rasmussen,	 K,	 Abel,	 C,	 Small,	 J,	 Chave,	 J,	
Rasmussen,	LV,	et	al.	2020.	An	unexpectedly	
large	 count	 of	 trees	 in	 the	 West	 African	
Sahara	 and	 Sahel.	 Nature.	 587(7832).	
doi.org/10.1038/s41586-020-2824-5.	

Everingham,	 M,	 van	 Gool,	 L,	 Williams,	 CKI,	
Winn,	 J	 &	 Zisserman,	 A.	 2010.	 The	 pascal	
visual	 object	 classes	 (VOC)	 challenge.	
International	 Journal	 of	 Computer	 Vision.	
88(2).	 doi.org/10.1007/s11263-009-0275-
4.	

Ghali,	R,	Akhloufi,	MA	&	Mseddi,	WS.	2022.	
Deep	Learning	and	Transformer	Approaches	
for	 UAV-Based	 Wildfire	 Detection	 and	
Segmentation.	 Sensors.	 22(5).	
doi.org/10.3390/s22051977.	

Girshick,	R,	Donahue,	J,	Darrell,	T	&	Malik,	J.	
2014.	 Rich	 feature	 hierarchies	 for	 accurate	
object	detection	and	semantic	segmentation.	

In:	Proceedings	of	the	IEEE	Computer	Society	
Conference	 on	 Computer	 Vision	 and	 Pattern	
Recognition.	
doi.org/10.1109/CVPR.2014.81.	

Hanan,	 NP	 &	 Anchang,	 JY.	 2020.	
doi.org/10.1038/d41586-020-02830-3.	

He,	K,	Zhang,	X,	Ren,	S	&	Sun,	J.	2015.	Spatial	
Pyramid	 Pooling	 in	 Deep	 Convolutional	
Networks	 for	 Visual	 Recognition.	 IEEE	
Transactions	on	Pattern	Analysis	and	Machine	
Intelligence.	 37(9).	
doi.org/10.1109/TPAMI.2015.2389824.	

Hu,	 J,	 Zhang,	 Y,	 Zhao,	 D,	 Yang,	 G,	 Chen,	 F,	
Zhou,	 C	 &	 Chen,	 W.	 2022.	 A	 Robust	 Deep	
Learning	 Approach	 for	 the	 Quantitative	
Characterization	 and	 Clustering	 of	 Peach	
Tree	 Crowns	 Based	 on	 UAV	 Images.	 IEEE	
Transactions	 on	 Geoscience	 and	 Remote	
Sensing.	 60.	
doi.org/10.1109/TGRS.2022.3142288.	

Immerzeel,	 WW,	 Kraaijenbrink,	 PDA,	 Shea,	
JM,	 Shrestha,	 AB,	 Pellicciotti,	 F,	 Bierkens,	
MFP	 &	 de	 Jong,	 SM.	 2014.	 High-resolution	
monitoring	 of	 Himalayan	 glacier	 dynamics	
using	 unmanned	 aerial	 vehicles.	 Remote	
Sensing	 of	 Environment.	 150.	
doi.org/10.1016/j.rse.2014.04.025.	

Jaskierniak,	D,	Lucieer,	A,	Kuczera,	G,	Turner,	
D,	Lane,	PNJ,	Benyon,	RG	&	Haydon,	S.	2021.	
Individual	 tree	 detection	 and	 crown	
delineation	from	Unmanned	Aircraft	System	
(UAS)	LiDAR	 in	structurally	complex	mixed	
species	 eucalypt	 forests.	 ISPRS	 Journal	 of	
Photogrammetry	 and	 Remote	 Sensing.	 171.	
doi.org/10.1016/j.isprsjprs.2020.10.016.	

Jintasuttisak,	T,	Edirisinghe,	E	&	Elbattay,	A.	
2022.	Deep	neural	network	based	date	palm	
tree	detection	 in	drone	 imagery.	Computers	
and	 Electronics	 in	 Agriculture.	 192.	
doi.org/10.1016/j.compag.2021.106560.	

K,	 L,	 Karnick,	 S,	 Ghalib,	 MR,	 Shankar,	 A,	
Khapre,	S	&	Tayubi,	IA.	2022.	A	novel	method	
for	vehicle	detection	in	high-resolution	aerial	
remote	 sensing	 images	 using	 YOLT	



 

 

202 

approach.	Multimedia	Tools	and	Applications.	
doi.org/10.1007/s11042-022-12613-9.	

Khanal,	 S,	 Fulton,	 J	 &	 Shearer,	 S.	 2017.	
doi.org/10.1016/j.compag.2017.05.001.	

Li,	 D	 &	 Li,	 M.	 2014.	 Research	 advance	 and	
application	 prospect	 of	 unmanned	 aerial	
vehicle	 remote	 sensing	 system.	 Wuhan	
Daxue	 Xuebao	 (Xinxi	 Kexue	 Ban)/Geomatics	
and	Information	Science	of	Wuhan	University.	
39(5).	
doi.org/10.13203/j.whugis20140045.	

Liu,	S,	Qi,	L,	Qin,	H,	Shi,	J	&	Jia,	J.	2018.	Path	
Aggregation	 Network	 for	 Instance	
Segmentation.	 In:	 Proceedings	 of	 the	 IEEE	
Computer	 Society	 Conference	 on	 Computer	
Vision	 and	 Pattern	 Recognition.	
doi.org/10.1109/CVPR.2018.00913.	

Osco,	LP,	Marcato	Junior,	J,	Marques	Ramos,	
AP,	 de	 Castro	 Jorge,	 LA,	 Fatholahi,	 SN,	 de	
Andrade	Silva,	J,	Matsubara,	ET,	Pistori,	H,	et	
al.	 2021.	
doi.org/10.1016/j.jag.2021.102456.	

Redmon,	J,	Divvala,	S,	Girshick,	R	&	Farhadi,	
A.	 2016.	 You	 only	 look	 once:	 Unified,	 real-
time	object	detection.	 In:	Proceedings	of	 the	
IEEE	 Computer	 Society	 Conference	 on	
Computer	Vision	and	Pattern	Recognition.	V.	
2016-December.	
doi.org/10.1109/CVPR.2016.91.	

Safonova,	A,	Guirado,	E,	Maglinets,	Y,	Alcaraz-
Segura,	 D	 &	 Tabik,	 S.	 2021.	 Olive	 tree	
biovolume	from	uav	multi-resolution	 image	
segmentation	 with	 mask	 r-cnn.	 Sensors.	
21(5).	doi.org/10.3390/s21051617.	

dos	Santos,	AA,	Marcato	Junior,	J,	Araújo,	MS,	
di	Martini,	DR,	Tetila,	EC,	Siqueira,	HL,	Aoki,	

C,	Eltner,	A,	et	al.	2019.	Assessment	of	CNN-
based	methods	for	individual	tree	detection	
on	 images	 captured	 by	 RGB	 cameras	
attached	 to	 UAVS.	 Sensors	 (Switzerland).	
19(16).	doi.org/10.3390/s19163595.	

Sun,	Y,	Li,	Z,	He,	H,	Guo,	L,	Zhang,	X	&	Xin,	Q.	
2022.	Counting	 trees	 in	 a	 subtropical	mega	
city	using	the	instance	segmentation	method.	
International	 Journal	 of	 Applied	 Earth	
Observation	 and	 Geoinformation.	 106.	
doi.org/10.1016/j.jag.2021.102662.	

Wang,	CY,	Mark	Liao,	HY,	Wu,	YH,	Chen,	PY,	
Hsieh,	 JW	 &	 Yeh,	 IH.	 2020.	 CSPNet:	 A	 new	
backbone	 that	 can	 enhance	 learning	
capability	of	CNN.	In:	IEEE	Computer	Society	
Conference	 on	 Computer	 Vision	 and	 Pattern	
Recognition	 Workshops.	 V.	 2020-June.	
doi.org/10.1109/CVPRW50498.2020.00203
.	

Wu,	Y,	Shan,	Y,	Lai,	Y	&	Zhou,	S.	2022.	Method	
of	 calculating	 land	 surface	 temperatures	
based	 on	 the	 low-altitude	 UAV	 thermal	
infrared	 remote	 sensing	data	and	 the	near-
ground	 meteorological	 data.	 Sustainable	
Cities	 and	 Society.	 78.	
doi.org/10.1016/j.scs.2021.103615.	

Yu,	K,	Hao,	Z,	Post,	CJ,	Mikhailova,	EA,	Lin,	L,	
Zhao,	G,	Tian,	S	&	Liu,	J.	2022.	Comparison	of	
Classical	 Methods	 and	 Mask	 R-CNN	 for	
Automatic	 Tree	 Detection	 and	 Mapping	
Using	UAV	 Imagery.	Remote	 Sensing.	 14(2).	
doi.org/10.3390/rs14020295.	

Zhang,	 L,	 Zhang,	 L	 &	 Du,	 B.	 2016.	 Deep	
learning	for	remote	sensing	data:	A	technical	
tutorial	 on	 the	 state	 of	 the	 art.	 IEEE	
Geoscience	 and	 Remote	 Sensing	 Magazine.	
4(2).	doi.org/10.1109/MGRS.2016.2540798.	

	
	
	
	
	
	
	


