

Identifying the Removal Efficiencies of As³⁺ in Wastewater by Functionalized Nanocellulose

WMRPL Wijesooriya¹, SA Senevirathne¹ and NB Jayaratna^{1#}

¹Department of Chemical Sciences, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale

naleen@as.rjt.ac.lk

Nanocellulose (NC) gains significant attention as a promising candidate in water purification and environmental remediation studies due to its superior chemical and physical properties. The present study explored the capacity of removing the hypertoxic As³⁺ in wastewater, with the use of NC after functionalization, namely sulfonation, phosphorylation, and xanthation. Cellulose was extracted through an alkaline treatment followed by bleaching with NaOCl from Panicum maximum, which is an invasive plant in Sri Lanka, selected as the cellulose source. Acid hydrolysis on extracted cellulose with 50% sulfuric acid, 85% phosphoric acid, and 21.9 % hydrochloric acid results in sulfonated, phosphorylated, and nonfunctionalized NC respectively. Xanthation on non-functionalized NC with NaOH and CS2 results xanthated NC. Functionalized NC was separately fabricated on each filter paper with 50 mg loading and allowed to filter the As³⁺containing water through it. The As³⁺ concentrations in the medium were determined by the colour intensity of formed I_2 with the reduction of IO_3 -, which corresponds to the oxidation of As^{3+} into As⁵⁺ in an acidic medium, with the aid of UV-Vis spectroscopy. Among the functionalized NC, the sulfonated NC has shown the highest removal efficiencies in 200 ppm, 150 ppm, and 100 ppm As³⁺ concentrations with removal percentages of 46.8,38.4, and 50.1. Further advancement of this work can reach the development of bio-degradable and affordable columns for As³⁺ removal. Dynamic Light Scattering results of sulfonated, phosphorylated, and non-functionalized NC were 295.7 nm, 271.4 nm, and 320.9 nm respectively, indicating that the particle sizes were in the nanoscale range.

Keywords: Arsenite, functionalized nanocellulose, water purification