

RESTRICTED

i

RESTRICTED

DS COMMENT

RESTRICTED

ii

RESTRICTED

COVER SHEET

1. Topic - Benefits of good quality software and

harmful consequences of poor-quality software for organizations and

individuals: role of software engineering professionals.

2. Academic DS - Dr. LP Kalansooriya

3. Military DS - Lt PGDPMK Palliyaguru

4. Syndicate Leader - DANR Dissanayake

5. Syndicate Members -

S/N Svc NO Rank Name Stream

1. 5794 SCQMS DANR Dissanayake MTS

2. 5863 C/CPL KMM Lakshan ENG

3. 5984 O/C RGN Chathuranga SE

4. 5986 O/C AK Kavindaya SE

5. 5985 O/C RMDKN Rathnayake SE

6. 5983 O/C HHAMI Hettiarachchi SE

7. 5982 O/C VI Samarasinghe SE

8. 5825 L/O/C JMIB Dissanayake SS

9. 5872 O/C WAC Jeewantha ENG

10. 5935` L/O/C MN Thishera MBBS

Supervised by:

Date: ………………………. ………………………………

 Dr. LP Kalansooriya

 (Academic DS)

Date: ………………………. ……………………………….

 Lt PGDPMK Palliyaguru

 (Military DS)

RESTRICTED

iii

RESTRICTED

DECLARATION

 We declare that this does not incorporate, without acknowledgment, any

material previously submitted for a degree or a diploma in any university and to the

best of my knowledge and belief, it does not contain any material previously published

and written by another person or our self except where due to reference is made in the

text. We also hereby give consent for our dissertation, if accepted, to be made available

for photocopying and interlibrary loans, and the title and for the title summary to be

made available to an outside organization.

S/N Svc NO Rank Name Sign

1 5794 SCQMS DANR Dissanayake …………….

2 5863 C/CPL KMM Lakshan …………….

3 5982 O/C VI Samarasinghe …………….

4 5983 O/C HHAMI Hettiarachchi …………….

5 5984 O/C RGN Chathuranga …………….

6 5985 O/C RMDKN Rathnayake …………….

7 5986 O/C AK Kavindaya …………….

8 5825 L/O/C JMIB Dissanayake …………….

9 5872 O/C WAC Jeewantha …………….

10 5935 L/O/C MN Thishera …………….

RESTRICTED

iv

RESTRICTED

ACKNOWLEDGEMENT

No one walks alone in the journey of life. We would like to express our deep

gratitude to Lt PGDPMK Palliyaguru for his advice and assistance in keeping our

progress on schedule. We would also like to thank our academic DS Dr. LP

Kalansooriya for his patience, guidance, enthusiastic encouragement, and useful

criticisms provided in this case study. We take this opportunity to acknowledge the

service of the library and the training support officer who collaborated in producing

this work. The assistance, cooperation, and experience of our fellow undergraduates

were essential for the completion of our presentation. Finally, we wish to thank our

parents, family members, and loved ones for their support and encouragement

throughout this study and syndicate presentation.

RESTRICTED

v

RESTRICTED

ABSTRACT

 Software industry plays a significant role in the economic, industrial,

educational and many other sectors. This script based all the areas on software usages

by organizations and individuals deviates according to the quality of them. According

to the software engineering international standards ISO/IEC there are some

measurements to deviate whether a software is good or bad. As per that deviation there

will be benefits as well as harmful consequences by them. The traditional methods

which were used by mankind were not sufficient enough to fulfil these requirements of

the new technological era. Thus, new automated methods were introduced. These new

approaches satisfied the world requirements and also provided employment

opportunities to billions of people. In this sheet we have emphasized all aspects and

examples for software quality and how they affect organizations and individuals in

separated defined subtopics. We have managed our resources well to elaborate the

whole spread idea about this content.

RESTRICTED

vi

RESTRICTED

AIM

 This study aims to explore options available good and bad impacts to

organizations and individuals due to quality of software accordingly. Further, the study

aims to analyze pure standards of software quality and usages all over the world.

RESTRICTED

vii

RESTRICTED

CONTENT

Chapter 1 Introduction 01

Chapter 2 Importance of Software Day to day life Usage 03

capacity of software as organizations and individuals

Chapter 3 Benefits of good quality software 10

Chapter 4 Bad consequences of poor-quality software 11

Chapter 5 Measures to be taken as an organization or 13

individual to enhance the software productivity

Chapter 6 Conclusion 14

Chapter 7 References 15

RESTRICTED

1

RESTRICTED

CHAPTER ONE

INTRODUCTION

1. Software is a set of instructions for a computer. The total set of programs,

operations, and routines related with the operation of a computer system is referred to

as software. The phrase was coined to distinguish these instructions from the physical

components of a computer system, which are known as hardware. A program, or

software program, is a set of instructions that tells a computer's hardware how to

complete a task. System software and application software are the two basic forms of

software. System software, which is primarily controlled by an operating system,

regulates the internal functioning of a computer as well as peripherals such as monitors,

printers, and storage devices. Application software, on the other hand, instructs the

computer to carry out user requests and can be defined as any program that processes

data for a user. Word processors, spreadsheets, database management, inventory and

payroll tools, and a variety of other "applications" are all examples of application

software. Network software is a third type of software that organizes communication

between computers connected to a network.

2. Software is often saved on a hard drive or magnetic diskette, which is an

external long-term memory device. The computer reads the program from the storage

device and temporarily stores the instructions in random access memory when it is in

use (RAM). Running or executing a program refers to the process of storing and then

carrying out instructions. Firmware, or "hard software," refers to software programs

and operations that are permanently stored in a computer's memory utilizing read-only

(ROM) technology.

3. A collection of instructions and data that tells a computer how to work is known

as software. This contrasts with hardware, which is what the system is made of and

does the real job. All information handled by computer systems, including programs

and data, is referred to as software in computer science and software engineering.

Programs, libraries, and related non-executable data, such as online documentation or

digital media, are all examples of software. Both software and hardware are

interdependent, and neither can be used effectively on its own.

4. Executable code is made up of machine language instructions that are supported

by a single processor—typically a central processing unit (CPU) or a graphics

RESTRICTED

2

RESTRICTED

processing unit (GPU) (GPU). Machine language is made up of sets of binary values

that represent processor instructions that modify the computer's state from its previous

one. An instruction, for example, may change the value stored in a specific storage area

in the computer—an effect that is not immediately visible to the user.

5. An instruction can also cause state changes that should be visible to the user by

invoking one of numerous inputs or output procedures, such as displaying text on a

computer screen. Unless the processor is told to "jump" to a new command or the

operating system interrupts it, the processor executes the instructions in the order they

are given. As of 2015, most personal computers, smartphone devices, and servers

include processors with multiple execution units or several processors working in

tandem, making computing much more concurrent than in the past. High-level

programming languages are used to write the majority of software. Because they are

closer to natural languages than machine languages, they are easier and more efficient

for programmers. A compiler, interpreter, or a combination of the two is used to

transform high-level languages into machine language. Low-level assembly languages,

which have a strong correlation to the computer's machine language instructions and

are converted into machine language via an assembler, can also be used to write

software.

RESTRICTED

3

RESTRICTED

OBJECTIVES

The objectives of this study are as follows.

a) To identify the importance of Software to whole word.

b) To identify the bad impacts of poor-quality software and good impacts

of good quality software

c) How to enhance the productivity of software by using strategies.

RESTRICTED

4

RESTRICTED

CHAPTER TWO

IMPORTANCE OF SOFTWARE DAY TODAY LIFE USAGE

CAPACITY OF SOFTWARE AS ORGANIZATIONS AND

INDIVIDUALS

1. Back in the olden days before there was a computer under every rock if you

wanted to design a circuit to accomplish something you had to do just that; design a

circuit to accomplish that thing. When you were finished the circuit would do that one

thing and nothing else.

2. Once computers were introduced it became possible to design circuitry that

could accomplish many different tasks, all you had to do is write a program. Programs

are much easier to create and modify than electronic circuitry and provide a means, in

large measure, to separate functionality from physical implementation. Computer

software, or just software is a general term used to describe a collection of computer

programs, procedures and documentation that perform some tasks on a computer

system. Today software is everywhere, your mobile, TV, computer everything runs on

software.

3. You order an ambulance, and it stands at your doorstep in like 15 min, how do

you think is this possible??Is it even imaginable without software, NO.

4. Software not only help us during leisure but is also important in various ways.

In such an appliance-oriented world, how can you live without such simple but

important software that are very useful in daily life.

5. The streetlights during your commute were likely programmed for maximum

throughput and minimum traffic using software. Maybe you used software when you

used GPS to find a fast route to wherever you might have gone to lunch or to the doctor.

6. When in the past people used to use post for send their messages. But now it

changed a lot and if we need to send a message, we just need to take our mobiles out.

Even though it is not taking time as using post. It takes a time of a tap.

RESTRICTED

5

RESTRICTED

7. In the past our parents used to pay bills by going to the bank. Also, if they

needed to do a bank transaction, they needed to be present at the bank. But because of

the adaptation of the software, it comes to the fingertip. We can do our all the payments

and every other transaction using our devices using the software.

8. As we see in the present, because of the pandemic time the education sector

stepped in to the online education. Because of that all the parents begin to use the online

devices. It means they need to know how to use this software for the education of their

children.

9. In the early days people use to wake up by the roosters crowing and the

mechanical alarm clocks. But by the time, in the present we use the digital alarm clocks

and even they are installed into the mobile phones too.

RESTRICTED

6

RESTRICTED

CHAPTER THREE

BENEFITS OF GOOD QUALITY SOFTWARE

The software quality

10. It is the extent to which the appropriate software was produced. Quality

software is free of bugs and defects, delivered on time and on budget, meets

requirements and expectations, and is maintainable. Quality is defined by ISO 8402-

1986 as "the totality of characteristics and features of a product or service that bear its

ability to implied needs or Satisfy stated." Quality, in the original sense, is difficult to

define but can be recognized when it exists.

11. Software quality is defined as a field of study and practice that describes the

desirable attributes of software products. There are two main approaches to software

quality

a. Defect Management

A software defect can be regarded as any failure to address end-user

requirements. Common defects include missed or misunderstood requirements and

errors in design, functional logic, data relationships, process timing, validity checking,

and coding errors.

The software defect management approach is based on counting and managing

defects. Defects are commonly categorized by severity, and the numbers in each

category are used for planning. More mature software development organizations use

tools, such as defect leakage matrices and control charts, to measure and improve

development process capability.

b. Quality Attributes

This approach to software quality is best exemplified by fixed quality models,

such as ISO/IEC 25010:2011. This standard describes a hierarchy of eight quality

characteristics each composed of sub-characteristics

1. Functional suitability

2. Reliability

3. Operability

4. Performance efficiency

5. Security

6. Compatibility

7. Maintainability

8. Transferability

https://asq.org/quality-resources/control-chart
https://asq.org/quality-resources/process-capability

RESTRICTED

7

RESTRICTED

Figure 3.1

 Additionally, the standard defines a quality-in-use model composed of five

characteristics:

1. Effectiveness

2. Efficiency

3. Satisfaction

4. Safety

5. Usability

 There are three widely accepted models when it comes to measuring software

quality

1. McCall’s Quality Model

 Mc Call’s model was first introduced in the US Airforce in the year

1977. The main intention of this model was to maintain harmony between users

and developers.

Figure 3.2

RESTRICTED

8

RESTRICTED

2. Boehm quality model

Boehm model was introduced in the year 1978. It was a kind of

hierarchical model that’s structured around high-level characteristics. Boehm

model measures software quality based on certain characteristics.

Figure 3.3

3. Dromey’s quality model
Dromey’s model is mainly focused on the attributes and sub-attributes to

connect properties of the software to the quality attributes. There are three

principal elements to this model
a) Product properties that affect the quality

b) High-level quality attributes

c) Linking the properties with quality attributes

Figure 3.4

RESTRICTED

9

RESTRICTED

The ISO/IEC 25000 series of standards

The series of standards ISO/IEC 25000, also known as Square (System and

Software Quality Requirements and Evaluation), has the goal of creating a framework

for the evaluation of software product quality.

ISO/IEC 25000 is the result of the evolution of several other standards.

Figure 3.5

12. Quality, in the user's opinion, is fitness for purpose or meeting the user's

needs. In the manufacturing industry, quality means adhering to process standards. The

following are the most important aspects of quality for the customer:

a) Good design – both in terms of appearance and feel

b) Longevity – lasts as long as

c) Consistency

d) Reliable – a reasonable number of breakdowns/failures

e) Excellent functionality

f) Excellent after-sales service

g) Price-to-value

RESTRICTED

10

RESTRICTED

Process of Software Quality

13. Quality assurance, quality planning, and quality control are the three main

components of software quality management activities.

Quality Control

14. Set up an organized and logical set of organizational processes for deciding on

software development standards in conjunction with regulatory processes; this gives

you a better chance of producing high-quality software.

15. This stage may include the following elements:

a) Identifying any standards that may be used in the software development

process.

b) To carry out traditional processes such as quality reviews.

c) Carry out procedures for recording data from in-process tests.

d) Encouraging process documentation standards.

Quality Planning

16. Quality planning is the process of defining the quality attributes associated with

the project's output. How were those characteristics evaluated? The software

development project has characteristics such as "robustness," "accessibility," and

"modularity." The quality plan may also include information about the intended market,

critical release dates, quality goals, anticipated risks, and risk management policies.

Quality Assurance

17. The quality assurance team tests and reviews software to ensure that quality

assurance processes and standards are met at both the organizational and project levels.

When software development firms implement the agile quality approach, the transition

from a more formal quality management structure to Agile methods can cause problems

if control procedures are not appropriately adapted. Among the activities are:

a) A follow-up review of software to ensure that any required changes

outlined in previous testing are addressed.

b) Software release testing with proper documentation of the testing

process

c) For evaluation, use software measurement and metrics.

d) Examine software and associated documentation for non-conformance

with standards.

RESTRICTED

11

RESTRICTED

18. Benefits of Ensuring Software Quality

a) The development team's productivity has increased.

b) Product quality has improved because test statistics and defect tracking

are more precise and up to date.

c) Reduced rework costs as defects are discovered earlier in the software

project development life cycle at every stage.

d) Increased trust in current product management and future product

development.

e) Increased credibility because the software produced will be of the

highest quality.

f) This saves money.

g) Instills trust in the client.

h) Maintains a positive user experience.

i) Increases Profitability.

j) Increases customer satisfaction.

Importance of Software Quality Management

19. Software quality must be a requirement for a successful software development

business; it cannot be an exception. Consider the various ways in which software

quality can affect business.

Predictability

20. Predictability is driven by software quality. Predictability decreases as the

amount of rework and lower quality product increases. If you do it correctly the first

time, there will be less variation in productivity, less rework, and overall better

performance. Products are shipped on time. It is far more difficult to manage poor

quality.

Reputation

21. A significant, solid reputation is difficult to establish and easy to lose, but it is

a powerful business driver when the company has it. With a few blunders, fame can

vanish, posing significant challenges to sales and, as a result, your bottom line.

RESTRICTED

12

RESTRICTED

Employee Satisfaction

22. Employees who are the happiest and most productive take pride in their work.

Allowing employees to create software will boost productivity and morale. Poor quality

products, extensive rework, dissatisfied customers, and difficulty meeting deadlines

have the opposite effect, resulting in a less productive workforce and high turnover.

Customer Contentment

23. A high-quality product pleases the customer. A happy customer returns to

provide positive referrals. Customer loyalty is heavily influenced by the quality of the

software produced as well as the service offered. Positive references can spread quickly

on social media platforms like Facebook and Twitter. Poor quality and dissatisfaction

can also communicate quickly, if not faster than good ones.

In conclusion

24. A successful software business is built on predictable and productive

performance, happy employees, a stellar reputation, and satisfied customers.

Everything contributes to the bottom line. Quality has an impact on many aspects of

software development projects.

25. Key Software Quality Tools

a) Selenium (Web Application Testing)

b) Robot Framework (Acceptance Testing)

c) Appium (Mobile Testing)

d) JMeter (Load Testing)

e) Jenkins (Continuous Testing)

f) Postman/Robot framework (API Testing)

g) Firebug / Firepath (Online Debugging)

h) GitLab (Project & Source Code Hosting)

i) Trello, Wekan board (Defect Tracking & Collaboration)

j) UIAutomator (Galen Framework)

k) Pycharm, Eclipse (Source code Editor), etc

How to Improve Software Quality

26. It is critical to reduce testing costs while also improving software quality. These

four points will help to improve software quality and testing efficiency.

https://www.seleniumhq.org/
https://robotframework.org/
https://appium.io/
https://jmeter.apache.org/
https://jenkins.io/
https://www.getpostman.com/
https://about.gitlab.com/
https://trello.com/
https://www.jetbrains.com/pycharm/

RESTRICTED

13

RESTRICTED

Testing time

27. By testing earlier, defects can be detected and resolved rather than having to

wait until the end of the process. The more software bugs that are discovered, the longer

and more expensive it is to fix them. Involved testers in the requirements and design

phases so that they could contribute to the creation of a more useful framework. More

than 70% of problems in a live environment can be traced back to poor conditions.

Enhance testing organization

28. Implement specific policies to ensure consistency, such as using repeatable

industry standard testing processes and training testers within this framework.

Continue to review

29. Just because certain methods have worked in the past does not guarantee that

they will continue to work in the future. Evaluation and refactoring processes enable

the testing team to maximize efficiency by reviewing what worked well. Implement a

Cause Analysis process to determine whether issues were caused by a ‘testing miss,' a

‘development miss,' or a ‘requirements or design miss.' Identify opportunities for

improvement throughout the software development process.

Improvement results from innovation.

30. Don't get stuck in the same old routine; instead, try something new.

Best Practices for Software Quality

Determine the Importance of Quality and Develop a Quality Assurance Process.

31. A first step toward preventing future programming errors. The development approach,

as well as high-quality design and code, necessitate the involvement of the QA team. To avoid

failures in end-product quality, the input and output of the QA process must be well defined,

planned, and documented.

Investigate Quality Benchmarks.

32. Gathering requirements is an important part of the development cycle as well as quality

assurance. Everything includes the application's features, design, functionalities, scalability,

reliability, efficiency, usability, and so on to determine whether the application will meet the

quality benchmarks.

RESTRICTED

14

RESTRICTED

Adhere to the ‘Test Early, Test Often' principle.

33. For faster quality application releases, we are now using an agile development

approach. As a result, it is critical for QA teams to ensure that development efforts are not

squandered. The “Test Early, Test Often” principle will assist QA teams in finding bugs early

and frequently in order to confirm continuous delivery.

QA and development efforts should be combined with DevOps efforts.

34. To ensure continuous improvement in the end application, it is strongly advised

to combine operations, development, and testing processes with DevOps. More

information on Performance Automation Testing can be found here.

Participate in Continuous Testing

35. It is the process of performing continuous testing on each (even minor) build to

determine whether or not it is successful. If not, we can quickly identify them and make

the necessary changes before reintroducing them into the testing process. A process that

all QA teams around the world must follow in order to ensure continuous delivery of

the end product. Continuous testing is a process that can be automated.

Make use of ready-made test frameworks.

36. It is preferable to use ready-made testing frameworks. It assists QA teams in

properly managing end-to-end testing cycles as well as ensuring continuous

integrations and deliveries.

The Advantages of Software Integration

Easier decision-making

43. Having a single, comprehensive view by integrating your software systems

simplifies decision making. It eliminates the need to switch between applications to

access data that may influence your decisions.

Enhanced Productivity

44. Integrating applications that use the same data sources will allow you to increase

the productivity of your operations. This is especially important when the same data is

entered into multiple software systems. Processing is simpler and faster with a single

point of data entry and no need to switch between different software applications.

RESTRICTED

15

RESTRICTED

More dependable data

45. Integrating and unifying your software systems reduces the possibility of using

incorrect data. A single point of view will allow your company to operate from a single

point of view and eliminate conflicting data values.

Improved analysis

46. When related data is combined in a single application, it becomes more

meaningful and powerful. Analysis of multiple data sources is handled better by

bringing the data together so that trends and conclusions can be drawn much more

quickly.

Enhanced data security

47. Managing the security of your data within a single unified system application is

far simpler than managing multiple data systems. Tasks are simplified by integrating

management, backup, and administration.

Improved customer service

48. The ability to access customer information quickly and easily is critical for

maintaining good relationships; integrating your CTI and CRM software will allow you

to assist customers more effectively.

Enhanced sales potential

49. Integrating systems that streamline any aspect of your end-to-end sales process

and increase order fulfillment rate will increase your overall sales potential.

RESTRICTED

16

RESTRICTED

CHAPTER FOUR

BAD CONSEQUENCES OF POOR-QUALITY SOFTWARE

50. Today, businesses are defined by their ability to provide quality software to their

clients and customers. Building and maintaining quality software isn’t necessarily easy,

but poor-quality software can stifle growth and ultimately upend your business.

51. The impact of poor software quality is difficult to define it in strict terms.

Software quality is judged in the context of technical and budgetary requirements and

many other external factors. And judgment by consumers is the prime measure for

rating the quality. Apart from that, features like reliability, stability, and need for

maintenance also impact software quality.

Poor business "fit" (mis-functional applications)

52. The biggest complaints about operational business applications are that they just

don't do what business users wanted. Consequently, employees implement endless

workarounds, managers use hidden spreadsheets, and the business fails to benefit from

its application investment

53. The biggest cause of mis-functional applications is missed or inaccurate user

requirements. It is easy blame IT for doing a bad job of requirements analysis, but the

root cause often lies in immature business processes that vary widely across the

business. In many organizations, these processes are often so poorly defined that

requirements analysis resembles an archaeological dig.

Outages

54. The most damaging outages are usually those in customer-facing systems such

as airline reservation, customer service, or online shopping. The costs of downtime,

which frequently hit six digits per hour, can also involve lost revenue. Other related

costs may include reactivating the system, recovering transaction fragments, spikes in

help desk utilization, and even liquidated damages.

55. The root causes of outages are usually non-functional application problems that

are generally invisible to end users until they cause a problem. Typically, developers

did not engineer the application defensively to handle the myriad operational challenges

RESTRICTED

17

RESTRICTED

that can beset a system, such as excessive customer load or glitches in other

applications with which it interacts.

Security breaches

56. The cost of security breaches can be staggering, especially considering expenses

associated with closing the vulnerability, repairing any malicious damage, alerting

customers whose records may have been penetrated, and then rectifying any damage

caused to them. For instance, I was recently among tens of thousands who received

replacement credit cards because hackers penetrated a vendor's transaction records.

Security breaches most often result when developers inadvertently allow pathways into

the application that skirt authentication procedures or expose the internal structure of

the application through user messages. Attackers can use vulnerabilities such as these

to inject malicious functions into the application during user interactions.

Business dis-agility

57. As organizations automate more processes, business agility is directly affected

by the speed with which applications can be modified or enhanced to meet rapidly

changing requirements. The longer it takes to modify or enhance an application, the

less agile and competitive the business.

58. When an application becomes needlessly complex and its architecture decays

through poorly engineered modifications, the time to release new functions and the

number of new defects injected into the application grow proportionately.

59. With each decline in application quality, the business must wait longer to

implement adjustments that enhance the company's competitive market position.

Poor performance

60. Although we rarely calculate the cost of lost productivity caused by degraded

application performance, costs to the business are alarming when considering impact

across a large department such as sales, claims processing, or customer service. Even a

five percent reduction in application performance can result in hundreds of thousands

of dollars in lost productivity each quarter.

61. The root cause usually involves programs that may be functionally correct, but

written with poor coding practices that cause excessive processing as usage or data

RESTRICTED

18

RESTRICTED

volume increases. Performance problems are difficult to detect during development

unless testers have the resources needed to simulate high loads the application may

experience after deployment.

Data corruption

62. Data corruption is often not detected until users see a bill or report containing

wildly inaccurate information. The cost of reconstructing the database and re-releasing

invoices, documents, or other corrected materials can be extensive.

63. Frequently, data corruption results when developers do not use approved

methods for accessing the database, leading to application data changes executed in an

uncontrolled, or poorly coordinated, manner.

Method of Fixing problems

64. Although many of these problems can slip through testing undetected, there are

application quality practices that can detect them:

65. Peer reviews of the application's design and code are effective in detecting

defects that might otherwise slip past test cases written to verify compliance with

functional requirements.

66. Static code analysis is also a good method to detect poor design or coding

practices that may cause the impacts described here.

67. Dynamic analysis is another technique useful for uncovering certain classes of

problems such as performance degradation.

68. IT executives should match their investment in quality practices such as peer

reviews, testing, and static code analysis to the magnitude of the business risks these

investments are expected to mitigate.

RESTRICTED

19

RESTRICTED

CHAPTER FIVE

MEASURES TO BE TAKEN AS AN ORGANIZATION OR

INDIVIDUAL TO ENHANCE THE SOFTWARE

PRODUCTIVITY

Factors Contribute to Increased Software Productivity

69. Following our definition of software productivity as the ratio of the functional

value of software produced to the labor and expense of producing it, the next step is to

identify ways to improve software productivity. Whereas computer hardware has a

reputation for unprecedented performance and cost improvements in the history of

technology, software productivity has lagged. This is due in part to the shortcomings in

software productivity measurements mentioned above, as well as the fact that faster,

more powerful computers can provide performance gains without gaining software

productivity.

70. Nonetheless, software development firms are always looking for ways to

improve both developer productivity and code quality. The first step toward improving

either is to establish the above-mentioned productivity and quality metrics and

benchmarks. Following the establishment of benchmarks, areas for improvement can

be identified and action plans put in place to improve performance. This could be as

simple as reorganizing developer workstations. According to studies, the design of a

developer's workspace can have a significant impact on their productivity.

71. Leveraging, or code reuse, is possibly the most effective method for increasing

software productivity. The process of reusing or porting application software across

multiple business sites is known as leveraging. Sometimes the highest real productivity

is the result of figuring out how to reuse previously written programs – possibly for a

completely different purpose – or figuring out how to solve problems with previously

existing programs by revising them as subprograms.

72. Reducing rework is another great way to boost software productivity. This

entails detecting errors and problems as early as possible in the software life cycle. A

mistake discovered in one phase can cut the amount of work required in subsequent

phases by a factor of three. That is, a good requirements analysis can reduce the design

job by three times, a good design can reduce the implementation job by three times, and

RESTRICTED

20

RESTRICTED

a good implementation can reduce the maintenance job by three times. Software

reliability can be improved by employing a variety of analysis methods, such as

software verification and testing.

73. Of course, the skill and personal behavior of the software developers themselves

play a significant role in software productivity. It has been observed that there is a 10

to 1 difference in productivity among programmers, which is due to their varying levels

of problem-solving skills and programming knowledge. Individual developer

productivity can be increased by providing adequate training in, and insisting on,

disciplined processes such as structured analysis, top-down design, modular design,

design reviews, code inspections, and quality assurance programs to software

developers.

RESTRICTED

21

RESTRICTED

CHAPTER FIVE

 CONCLUSION

74. The chapter emphasizes the conclusion about the background that has been

created with the software usage as organizations and individuals. This sector It is

elaborated the bad and good impacts of a software based on their quality. According to

the above discussions, we summarize the areas which we should point out during the

research and we have realistic examples which were happened In the world history

related to our presentation to prove how our theoretical facts.

RESTRICTED

22

RESTRICTED

REFERENCES

1. IBM. "What is Software Development". IBM. IBM. Retrieved 4 October 2021.

2. Johnson, Dave. "What is Software". Business Insider. Business Insider. Retrieved 4

October 2021

3. "Embedded Software—Technologies and Trends". IEEE Computer Society. May–June

2009. Archived from the original on 28 October 2013. Retrieved 6 November 2013.

4. Guides.ll.georgetown.edu. 2021. Guides: International and Foreign Cyberspace Law

Research Guide: Treaties & International Agreements. [online] Available at:

<https://guides.ll.georgetown.edu/c.php?g=363530&p=4821478> [Accessed 15 October

2021].

5. Asq.org. 2021. What is Software Quality? | ASQ. [online] Available at:

<https://asq.org/quality-resources/software-quality> [Accessed 24 October 2021].

6. dzone.com. 2021. Top 10 Automated Software Testing Tools - DZone DevOps. [online]

Available at: <https://dzone.com/articles/top-10-automated-software-testing-tools>

[Accessed 24 October 2021].

7. Information and Software Technology, 1990. Software quality assurance. 32(1), p.2.

