I. INTRODUCTION

A virus can be described as a micro parasite, consisting a core of genetic material, either RNA or DNA and a surrounding envelope of protein, lipid and glycoprotein. It possesses the capability to infect any form of life, including animals, plants and microorganisms (Koonin et al. 2006). Viruses are incompetent of multiplying within them, thus they acquire the assistance of a host cell to be spread. Although certain viruses hold some important functions, substantial amount of viruses including the human immunodeficiency virus (HIV), common cold, influenza, chickenpox, hepatitis A/B/C and human papilloma virus (HPV) are considered to be pathogenic (Zahler 1979).

With numerous researchers finding a way to cure these viruses, virus dynamical modelling has also given a considerable contribution in epidemiology. Even though many mathematical models have been proposed for various viral infections, a proper assessment on them has not been done throughout the literature. Viral dynamics can consist a collection of mathematical models which describe the behavior in the populations of targeted uninfected cells, infected cells and the virus over a period of time. Thus a three dimensional model has been used (Bonhoeffer et al. 1997; Nowak & May 2000) to describe the phenomena as on model (1).

\[\frac{d\beta(t)}{dt} = \beta u(t) v(t) - kr(t); \]

\[\frac{d\gamma(t)}{dt} = kr(t) - j\gamma(t); \]

\[\frac{d\nu(t)}{dt} = j\gamma(t) - l\nu(t). \]

Model (1)

Considering a body compartment, the concentrations of uninfected target cells, infected cells with the aptitude of
In the following models, ≥ 0 is the intracellular time delay while − accounts for the probability of surviving from time − to, ≥ 0 is the maturation time delay while − accounts for the probability of surviving from time − to and the parameters and are positive constants.

\[
\dot{u}(t) = \alpha - \beta u(t)v(t) - ju(t);
\]
\[
\dot{r}(t) = e^{-k\tau}b\beta u(t-\tau)v(t-\tau) - kr(t);
\]
\[
\dot{v}(t) = e^{-l\sigma}m r(t-\sigma) - lv(t).
\]

2. Michaelis-Menten functional response/ Holling Type II functional response

Model (3)

3. Saturated incidence rate (Li & Ma 2007)

Model (4)

4. Beddington-DeAngelis infection rate (Wang et al. 2010; Huang et al. 2011; Pradeep & Ma 2014; Huang et al. 2009)

Model (5)

In the recent times, there has been an extensive effort in the mathematical modelling of virus dynamics, mainly encouraged by the model (1). These models have been used to study HIV (Li & Ma 2007; Wang et al. 2010; Perelson & Ribeiro 2013; Pradeep & Ma 2014; Pradeep et al. 2015), hepatitis B virus (Ciupe et al. 2007) and hepatitis C virus (Neumann et al. 1998; Chatterjee et al. 2013) among other infections.

In model (1), it has not been considered any of the time delays which occur in the viral progression biologically. In accordance to do the comparison of more realistic virus dynamics models, time delays have been incorporated to compare models with delay differential equations.

The intracellular delay, indicating the time between the viral entry and the new virus production was initially proposed by (Herz et al. 1996) and numerous models representing the intracellular delay were developed later (Li & Ma 2007; Huang et al. 2010; Huang et al. 2011; Pradeep et al. 2015; Pradeep & Ma 2014).

Maturation time delay denotes the time period which the virus acquired after its rise, to develop the ability to infect the target cells. Mathematical models representing the maturation time delay were also developed in the recent years (Huang et al. 2010; Pradeep et al. 2015).

II. METHODOLOGY

In this paper, the followings models, with different functional responses were compared, with respective to the time delays and the reproductive rate (0) which denotes the average number of infected cells produced by one infected cell over the course of its infectious period (Fraser et al. 2009).
In the following models, $\tau \geq 0$ is the intracellular time delay while $\tau^* \geq 0$ accounts for the probability of surviving from time τ to τ^*. $\tau \geq 0$ is the maturation time delay while $\tau^* \geq 0$ accounts for the probability of surviving from time τ^* to τ^*. The parameters a, b, and c are positive constants.

$$
\frac{du}{dt} = \alpha - \beta u(t) v(t) - j u(t); \\
\frac{dr}{dt} = e^{-k\tau\beta} u(t-\tau) v(t-\tau) - k r(t); \\
\frac{dv}{dt} = e^{-l\sigma m} r(t-\sigma) - l v(t).
$$

2. Michaelis-Menten functional response/Holling Type II functional response

3. Saturated incidence rate (Li & Ma 2007)

4. Beddington-DeAngelis infection rate (Wang et al. 2010; Huang et al. 2011; Pradeep & Ma 2014; Huang et al. 2009)

In the recent times, there has been an extensive effort in the mathematical modelling of virus dynamics, mainly encouraged by the model (1). These models have been used to study HIV (Li & Ma 2007; Wang et al. 2010; Perelson & Ribeiro 2013; Pradeep & Ma 2014; Pradeep et al. 2015), hepatitis B virus (Ciupe et al. 2007) and hepatitis C virus (Neumann et al. 1998; Chatterjee et al. 2013) among other infections.

In model (1), it has not been considered any of the time delays which occur in the viral progression biologically. In accordance to do the comparison of more realistic virus dynamics models, time delays have been incorporated to compare models with delay differential equations.

The intracellular delay, indicating the time between the viral entry and the new virus production was initially proposed by (Herz et al. 1996) and numerous models representing the intracellular delay were developed later (Li & Ma 2007; Huang et al. 2010; Huang et al. 2011; Pradeep et al. 2015; Pradeep & Ma 2014).

Maturation time delay denotes the time period which the virus acquired after its rise, to develop the ability to infect the target cells. Mathematical models representing the maturation time delay were also developed in the recent years (Huang et al. 2010; Pradeep et al. 2015).

II. METHODOLOGY

In this paper, the following models, with different functional responses were compared, with respective to the time delays and the reproductive rate (R_0) which denotes the average number of infected cells produced by one infected cell over the course of its infectious period (Fraser et al. 2009).

III. RESULTS AND DISCUSSION

For all the models, numerical simulations were done using literature reported parameter values, and the following graphs were obtained.

First, the intracellular time delay (τ) was kept fixed at the value of 15, and the maturation time delay (τ^*) was varied ranging from 0-20, and the deviations of the reproductive rate (R_0) was attained.

For model (2), R_0 deviates from 0-5, for model (3) and model (4) R_0 deviates from 0-4.5, and for the model (5), R_0 deviates from 0-1.8. These graphical representations verify the fact that model (5) has a greater ability and potential in reducing R_0, by reducing the maturation time delay (τ^*) compared to other models.

Then, the maturation time delay (τ^*) was kept fixed at the value of 2, and the maturation time delay (τ) was varied ranging from 0-20, and the deviations of the reproductive rate (R_0) was attained.

<table>
<thead>
<tr>
<th>Model</th>
<th>R_0</th>
<th>μ</th>
<th>τ</th>
<th>μ^*</th>
<th>ν^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.5</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.7</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>0.8</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0.9</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 1 - Solutions of Infected Equilibria for the above mentioned Models with time delays

Figure 1 - R_0 versus σ for Model 2

Figure 2 - R_0 versus σ for Model 3 and 4

Figure 3 - R_0 versus σ for Model 5

Figure 4 - R_0 versus τ for model 2

Figure 5 - R_0 versus τ^* for model 5
IV. CONCLUSION

R_0 is the limiting factor in determining if the disease has been spread or died out within a host. Thus the reproductive rate should be less than unity in order to recognize as the host is free of infection. Therefore, as to reduce R_0, various parameters should be increased or decreased. But, looking at the scenario biologically, it has been identified that the parameters which could be changed by the influence of humans are the intracellular and the maturation time delays. It is certain, from the gained results that the model with Beddington-DeAngelis functional response carries a greater capacity in reducing R_0, with the effect of time delays. Consequently, this comparison can help the drug producers in recognizing the most appropriate viral dynamics model for their identification purposes of parameters more significantly.

V. REFERENCES

