
Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

158

A Survey of WebSocket Development Techniques and Technologies

T. Wirasingha#1, N.R. Dissanayake1

1Informatics Institute of Technology, No.57, Ramakrishna road, Colombo 06, Sri Lanka
#torinindika@gmail.com

Abstract—WebSocket protocol has become a sound
technology in software industry for real-time web
application development, since it provides bidirectional, full-
duplex communication between client and server over a
single connection. There are several concepts, techniques,
and technologies such as frameworks and libraries for
WebSocket based development. However, the knowledge
existing regarding these concepts, techniques, and
technologies is scattered, thus it is not easy to obtain the
information required for a specific development
environment. In this paper we analyse the literature, then
discuss about the existing concepts, techniques, and
technologies, available for WebSocket based development.
The facts delivered in this paper can be utilized to reduce
knowledge search time for engineering of WebSocket based
applications, and it can help developers to easily find the
needful for the implementation of WebSocket. The
knowledge of this paper will be utilized in our ongoing
research, towards design and development of a WebSocket
server-tool, which will help in rapid development.

Keywords— Real time web, Survey, WebSocket

I. INTRODUCTION

The web applications were built on the client-server

architecture, in which the client requests for services from

the server, and then the server responds with the data or

information. Client-server architecture is based on the

request/response paradigm of Hyper Text Transfer Protocol

(HTTP). HTTP is the fundamental protocol for the service of

the web; and, one of the main limitations of HTTP is that it

is half-duplex(Lubbers, Albers, & Salim, 2010)In the late

1990s, developers started to develop web pages with

dynamic content, with client-side and server-side

application development languages.

Whenever a web application runs on a web browser it will

be communicating with a server. But if that communication

takes a long time, the web page may become an empty

page that has no texts and no images. If this occurs

frequently, when a user requests “Reload” under heavy

loaded servers, it could lead to users’ confusion because

users lose sight of the operation on a web page. To resolve

this issue, AJAX (Asynchronous JavaScript and XML)

technology is adopted to web applications (Garrett, 2005).

If a web application is constructed based on Ajax

technology, the empty web pages will be avoided because

client programs communicate asynchronously with web

servers. Client programs do not need to wait for the

termination of communication with the server.

In 2011, WebSocket was introduced and it provides a full-

duplex communication channel over a single WebSocket

(WS) connection. WebSocket protocol was standardized by

the Internet Engineering Task Force (IETF) as RFC 6455, and

WebSocket Application Program Interface (API) is

standardized by World Web Consortium (W3C). WebSocket

provides a way of creating a persistent, low latency

connection, which is capable of handling transactions

initiated by either the client or the server, thus full-duplex

(Skvorc, Horvat, & Srbljic, 2014) and support both data-

push and data-pull.

A. Problem and motivation

There are different concepts, techniques, and technologies

regarding WebSocket, based on different programming

languages and platforms. In order to develop a WebSocket

web application, the developers need to write code for

both client and server components using these available

concepts, techniques, and technologies. When selecting

suitable concepts, techniques, and technologies for the

application, they need to spend a considerable amount of

time on studying and comparing existing concepts,

techniques, and technologies to understand their pros and

cons.

Furthermore, we identified that there is a lack of proper

details as in surveys related to the WebSocket development

which compare real-time web concepts, techniques, and

technologies, and their implementations. This setting leads

to instil erroneous impressions on software engineers and

developers.

To address these issues and fill the gaps, this paper

provides an analysis of a survey of the concepts, techniques,

and technologies related to WebSocket. In the Background

section we discuss and present the pros and cons of the

asynchronous communication implementation concepts,

techniques, and technologies available for the Rich Internet

Application (RIA) development. Then in the next section we

present the analysis of the findings of the survey.

Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

159

B. Methodology

During our literature survey we identified that there are

WebSocket server implementations based on different

programming languages such as Java, PHP, Scala, JavaScript,

C++ (Thorson), ANSI C(libwebsockets.org),etc. We

narrowed down the scope of the survey onto JAVA, PHP

and python, focusing on the major platforms, emphasising

on PHP. For this survey we used three main search engines:

Google Scholar, IEEE Xplore, and ACM Digital Library.

Through these search engines, we searched for the content

using the same set of search strings, as below.

 Rich Internet Applications

 Real time web

 WebSocket

 WebSocket server

 WebSocket server php

We analysed our findings into four main categories: A)

Algorithms, Design patterns, and Architectural styles, B)

APIs, 3) Frameworks, and 4) WebSocket server-tools, which

are presented in the section III of the paper. Under

frameworks we are discussing our findings about existing

server implementations for WebSocket. We found fifteen

existing solutions, and put them into a list and sorted them

in descending order based on the popularity in Google

search engine and Alexa rankings (http://www.alexa.com/,

1996), we then selected the top most seven to present in

this paper.

II. BACKGROUND OF RICH INTERNET APPLICATION

DEVELOPMENT TECHNIQUES AND TECHNOLOGIES

In this section we discuss the available asynchronous

communication techniques and technologies, and their

pros and cons, in order to get a good understanding of the

need for WebSocket. Then at the end of the section, we

discuss the background of the WebSocket, indicating the

importance of the WebSocket towards real-time web

application development.

A.AJAX

AJAX (Garrett, 2005) is a group of existing technologies (i.e.

HTML, CSS, JavaScript, XML, etc.), which can be seen as the

simplest form of the asynchronous communication. AJAX

can be defined as a technique rather than a technology,

and can also be seen as an architectural style. In AJAX, a

client requests from a web server for

data/information/resources; then once the response is

received, the client processes it and makes changes to the

page accordingly, without fully reloading the page but just

by updating the necessary sections of the page, which is

referred to as partial page rendering.

Since the communication is asynchronous, it does not block

the user, and the communication is done faster since less

amount of data are communicated, therefore the user

experience is enhanced. Client requests are sent as

XMLHttpRequest (XHR)(W3C, XMLHttpRequest Level 1,

2014)and the request can point to a static file, which is

stored on the server or it’s possible to execute a script

dynamically. Scripts can communicate with a database

server and perform CRUD (Create, Read, Update, and

Delete) operations. Data can be communicated in different

formats such as XML, JSON, HTML, etc.

The main problem with AJAX is that the communication of

it is half duplex in the data-pull mode, thus not suitable for

real-time applications (Liu & Sun, 2012). Additionally, in the

context of this paper, AJAX exhibits the C10K problem

(Kegel, 2014), which states how to provide reasonable

service to 10,000 or more concurrent clients using a

standard server (Liu & Deters). Technical experiments

(Bozdag, Mesbah, & Deursen, 2007) show that if we need

high data coherence and high network performance, we

should select data-push approach for AJAX.

B. COMET

Comet is an umbrella term, which covers the AJAX based

techniques like streaming and long-polling (Gravelle).It tries

to reduce and overcome the limitations due to its

incapability to start the communication on server side by

sending a request to the client. Comet tries to overcome

these limitations of the data-pull technique in AJAX, by

simulating data-push over data-pull. For example, consider

an application developed using long-polling technique; it

consists of two steps: In the first step, the client sends a

request to the server and the server holds this request

open until there is data available for the client; and in the

second step, data is sent when available from the server to

the client and a new request is started by the client.

With this approach the server can send data to the client

immediately. The client polls data from the server by

sending a request, which remains open for a long time until

data is available to be sent to the client at once.

This technique comparatively good but it has its own

drawbacks. For example there can be timeouts if the client-

request is open too long. Then in the next step the client

has to re-initiate the polling. In addition the behaviour of

time-outs can vary for different environments. Also an

Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

160

open request on server side which is not closed requires

much of the server resources. Furthermore, Comet

techniques also face the 10k issue.

C. Server Sent Events (SSE)

SSE (W3C, Server-Sent Events, 2015)is intended for

streaming text-based event data from the server directly to

the client, based on data-push mode. The Server-Sent

Events EventSource API is standardized as part of HTML5 by

the W3C.SSE is used to push notifications into client’s

components of the web application, which means that it is

more suited for real-time communication of server to client.

SSE is capable of providing a real-time web application

experience to the users by pushing data to the client.

However, it is not bi-directional, in that it only supports

server push notifications.

D. WebSocket

WebSocket (W3C, The WebSocket API, 2012) provides a

way of creating a persistent, low latency connection, which

is capable of handling communication initiated by either

the client or the server. The client establishes a WebSocket

connection through a process known as the WebSocket

handshake. This process starts with the client sending a

regular HTTP request to the server, in which an upgrade

header is included informing the server that the client

wishes to establish a WebSocket connection. If the server

supports the WebSocket protocol, it agrees to upgrade and

communicates this back to the client using an upgrade

header in the response (WebSockets - Quick

Guide).WebSocket protocol was published as IETF standard

and there are many technologies and libraries supporting it.

WebSocket protocol is supported by HTML5, Java EE7, and

also by a wide range of browsers. Also in Android, IOS

applications developers can utilize WebSocket by using

different libraries such as Autobahn-library.

For HTTP, the connection is usually closed after every

request-response phase. In contrast, in the WebSocket

connection started by the client, once the connection is

established it is never closed until it is closed explicitly by

either the client or the server. While the connection is kept

open the client and the server are able to communicate bi-

directionally in both data-push and pull modes, since

WebSocket supports full-duplex bi-directional

communication, allowing the transmission of data in both

directions simultaneously. Furthermore, WebSocket

addresses the 10k issue, with its small headers and avoiding

the overhead of frequent request headers (Pimentel,

Bolívar, & Nickerson, 2012).

III. AVAILABLE CONCEPTS, TECHNIQUES, AND

TECHNOLOGIES FOR WEBSOCKET BASED DEVELOPMENT

In this section we present the Architectural styles,

Application Program Interfaces (APIs), and the frameworks

for WebSocket based RIA development, we identified in the

survey.

A. Architectural styles

WebSocket supports architectural styles and patterns such

as server-push, broadcast, and publish-subscribe (pub/sub)

patterns.

1) Push style: Push (also known as server-push)(Zhang &

Shen, 2013)describes a way of internet-based

communication where the communication is initiated by

the server. It is contrasted with pull/get, where the

communication is initiated by the client.

2) Broadcast style (Saygin & Ulusoy, 2012) : Compared with

point-to-point access, broadcast is a more attractive

method because a single broadcast of a data item can

satisfy all the outstanding requests for that item

simultaneously. As such, broadcast can scale up to an

arbitrary number of users. There are three kinds of

broadcast models as;

 Push-based broadcast(Acharya, Alonso, & Franklin,

Broadcast Disks: Data Management for

Asymmetric Communication Environments,

1995)(Hameed & Vaidya, 1999) - The server

disseminates information using a

periodic/aperiodic broadcast program

 On-demand (or pull-based) broadcast(Acharya,

Franklin, & Zdonik, Balancing Push and Pull for

Data Broadcast, 1997) - The server disseminates

information based on the outstanding requests

submitted by clients

 Hybrid broadcast(Acharya, Franklin, & Zdonik,

Balancing Push and Pull for Data Broadcast,

1997)(Lee, Hu, & Lee, 1999) - Push-based

broadcast and on-demand data deliveries are

combined to complement each other

2) Pub/sub style (Carzaniga, Papalini, & Wolf, 2011) : The

publisher-subscriber pattern is a way of passing messages

to an arbitrary number of senders and this communication

is bidirectional. Pub/sub systems contain information

providers, who publish events to the system, and

information consumers, who subscribe to particular

categories of events within the system. The system ensures

the timely delivery of published events to all interested

Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

161

subscribers. A pub/sub system also typically contains

message brokers that are responsible for routing messages

between publishers and subscribers.

B.APIs

API contains predefine set of protocols, functions/features,

and rules, which can be used by developers in software

development (Christensson). They come as a package, thus

developers can reuse them where they are needed instead

of developing the features provided by the APIs from

scratch. A powerful API will reduce development time,

complexity of the system and it will increase the

performance of the application (Jendrock, Cervera-Navarro,

& Evans, 2014)

1) JSR 356(Vos, 2013) : JSR 356 is an API for java web

developers, which can be used to integrate WebSocket in

software applications in both server-side and client-side

(Vos, 2013). In 2013, Oracle released Java EE 7, which is a

rich enterprise software platform, and JSR 356 is a part of

that package (Java EE 7 container has the implementation

for the API). In Java EE 7, WebSocket client and server

components are well balanced, and because of that

differences between these components are minimal.

Generally, this API follows techniques, which are common

to Java EE and it supports two different programming

models: Annotation-driven, and Interface-driven.

C. Frameworks

This section presents the top most frameworks (as

specified in the methodology) we found for developing

WebSocket applications.

1) jWebSocket(jwebsocket) : jWebSocket is an open source

project, which is released under the Apache License 2.0 on

2010 as a beta version, and it contains support for both

client and server component development (jwebsocket).

jWebSocket is cross browser compatible and also supports

cross platform. Their downloadable package is bundled

with WebSocket server (Developed by native java),

WebSocket client (Developed by JavaScript) and Clients for

Android, Symbian, and IOS. Additionally they have

developed a module called “Flash Bridge” for older

browsers. According to the inventors, developers can use

this framework to build standalone applications and also

this can be easily integrated with existing complex web

applications.

2) Spring (Spring) : Spring is another open source project

released under the Apache License 2.0 on 2003. This

framework can be used to develop any type of java

application. And Spring specifically contains extensions to

develop java web applications on top of Java EE platform

(Spring). Web framework of Spring is well designed and

follows Model-View-Controller (MVC) pattern. One of the

key advantages of using this framework is that it allows

programmers to develop enterprise-class applications using

Plain Old Java Object (POJO). Spring is currently on top of

all other java frameworks (Java, 2016) because of its

testability and light weight.

Spring Framework 4 includes a module (spring-WebSocket)

to support WebSocket and it is compatible with JSR 356.

Additionally it provides some other features such as

transparent fall-back options to overcome lack of support

for WebSocket in some browsers and these are based on

SockJS protocol (WebSocket Support). Spring’s WebSocket

API id is designed in a way that it supports various

application servers such as Tomcat (7.0.47+), Jetty (9.1+)

and GlassFish (4.1+).

3) Play (Play) : Play framework was released on 2009 to the

open source community under the Apache License 2.0. It

had been developed using both Java and Scala, and this

project is still under a process of active development (Play).

This framework also supports the MVC pattern.

Play doesn’t follow the exact Java EE standards and it is

designed with the concept of container-less deployment

(Run natively on platforms). Their latest release is Play 2

and they have transferred the entire core and the default

template language to Scala. But it still provides server side

cooperation with Java libraries, and it could handle single

page applications with WebSocket implementation.

Another key fact is that Play has more targets in RESTful

architecture. Comparing to other Java web frameworks

Play is easy to manage. This is because the code need not

be compiled, or deployed, nor is it necessary to restart the

server to check bug fixes; the page need only be reloaded.

LinkedIn (Brikman, 2013) and Coursera(Saeta, 2014) are

some examples of popular web applications developed

using Play framework.

4) Wrench (Scheirlinck, 2012) : Wrench is a WebSocket

server and a client package for PHP (5.3/5.4). It is specially

targeting the latest stable versions of Chrome and Firefox

as the browsers. Wrench is the new version of what was

previously known as PHP-WebSocket (PHP-Websockets,

2013). Wrench provides a base class for the WebSocket

sever, which implements the recent version of the

Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

162

WebSocket protocol and which does the socket

management and the WebSocket handshake. One of the

drawbacks of Wrench is that it uses a single-process server

(No thread implementation) (Contributors, 2015).

Therefore using this as a standalone package will not be

suitable for enterprise level applications, but only for small

scale projects. In order to use Wrench for enterprise level

applications, developers can use middleware, such as

RabbitMQ's STOMP WebSocket plug-in (Pivotal), between

the PHP application and the WebSocket clients.

5) Ratchet (WebSockets for PHP) : Ratchet is a loosely

coupled PHP library, which can be used to develop PHP

based real-time web applications over WebSocket. It

requires PHP 5.4+ for best performances. It contains nine

components, which are developed for different purposes.

For example IoServer (base of the application), WsServer

component (allows developer’s server to communicate

with browsers that use W3C WebSocket API), FlashPolicy

(allows browsers, which do not natively support WebSocket

to connect applications with Flash sockets), etc. By using

these components programmers can add functionalities

such as HTTP protocol handler, WebSocket protocol

handler, etc.

6) Tornado (Tornado) : Tornado is a scalable, non-blocking

web server and web application framework, released in

2009 for Python. It was developed to be used by

FriendFeed (Tornado) and later it was released under the

Apache License 2.0 as an open-source project. In their web

framework there is a specific module, which supports

WebSocket, known as tornado.websocket.

7) Socket.IO (Rauch) : Socket.IO is a JavaScript library which

is used for real-time web applications in combination with

Node.js (Foundation). Node.js is a platform built on

Chrome’s JavaScript runtime to ease the building of

applications in JavaScript that run on the server. Node.js

uses an event-driven, non-blocking I/O model, which makes

it a popular solution for building real time applications.

Socket.IO is one of the third party libraries which can be

used with Node.js. It was released in 2010 and was

developed by Guillermo Rauch. Latest version is 1.4.5 and it

contains separate APIs for the server and the client.

Socket.IO uses a separate module called Engine.IO which is

the implementation of transport-based cross-

browser/cross-device bi-directional communication layer. It

made the new version more lightweight.

D. WebSocket Server Tools

During the literature survey we were searching for server

tools for WebSocket – such as XAMPP or WAMP for PHP,

however we did not come across any. Still any server tool,

which can support rapid development of WebSocket

applications, is not out there. We assume that the concept

and the architectural formalism of the WebSocket

applications is too complex to design and develop a server

tool to support development of WebSocket applications,

however it is worth to be looked into.

In our ongoing research we expect to design, develop and

test a WebSocket server tool towards rapid development of

WebSocket based applications.

IV. CONCLUSION

The paper presents and discusses the background of the

available techniques and technologies for implementing

the asynchronous communication of RIAs; also indicating

their pros and cons, towards maximising the advantages of

WebSocket.

Then the paper presents the analysis of the survey towards

the consolidation of the available knowledge of WebSocket

development techniques and technologies into a single

publication. In the analysis we have briefly discussed the

features of the identified concepts, techniques, and

technologies. The knowledge delivered in this paper can

assist developers of WebSocket based applications, by

saving the time that they must otherwise spend on

searching and learning the techniques and technologies for

WebSocket.

From the survey, we have noted that there are no rapid

application development server tools for WebSocket based

application development, and we suggest that this be

looked into. Furthermore, in the future we hope to

introduce a server tool for WebSocket application

development.

REFERENCES

(n.d.). Retrieved 03 22, 2016, from Play:

https://www.playframework.com/

(n.d.). Retrieved 03 13, 2016, from Spring: https://spring.io/

(n.d.). Retrieved March 28, 2016, from libwebsockets.org:

https://libwebsockets.org/

Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

163

(1996, April 01). Retrieved April 28, 2016, from

http://www.alexa.com/: http://www.alexa.com/

Acharya, S., Alonso, R., & Franklin, M. (1995). Broadcast

Disks: Data Management for Asymmetric Communication

Environments. ACM SIGMOD Conference. San Jose: ACM.

Acharya, S., Franklin, M., & Zdonik, S. (1997). Balancing

Push and Pull for Data Broadcast. ACM SIGMOD Conference

(pp. 1-2). Tuscon: ACM.

Bozdag, E., Mesbah, A., & Deursen, A. v. (2007). A

Comparison of Push and Pull. 2007 9th IEEE International

Workshop on Web Site Evolution (pp. 5-7). Paris: IEEE.

Brikman, Y. (2013, 02 20). The Play Framework at LinkedIn.

Retrieved 01 12, 2016, from LinkedIn:

https://engineering.linkedin.com/play/play-framework-

linkedin

Carzaniga, A., Papalini, M., & Wolf, A. L. (2011). Content-

Based Publish/Subscribe Networking and Information-

Centric Networking. (pp. 1-2). Toronto: ICN.

Christensson, P. (n.d.). API. Retrieved 03 21, 2016, from

TechTerms: http://techterms.com/definition/api

Contributors, D. S. (2015, November 06). Wrench

Documentation.

Foundation, N. (n.d.). Retrieved April 26, 2016, from Node

Js: https://nodejs.org/en/

Garrett, J. J. (2005, February 18). Ajax: A New Approach to

Web Applications. Retrieved from

https://courses.cs.washington.edu/courses/cse490h/07sp/

readings/ajax_adaptive_path.pdf

Gravelle, R. (n.d.). Comet Programming: Using Ajax to

Simulate Server Push. Retrieved April 26, 2016, from

webreference:

http://www.webreference.com/programming/javascript/rg

28/index.html

Hameed, S., & Vaidya, N. H. (1999). Efficient algorithms for

scheduling data broadcast. Wireless Networks, Volume 5

Issue 3 .

Java. (2016). Retrieved 04 03, 2016, from HotFrameworks :

http://hotframeworks.com/languages/java

Jendrock, E., Cervera-Navarro, R., & Evans, I. (2014). Java

Platform, Enterprise Edition The Java EE Tutorial Release 7 .

Oracle.

jwebsocket. (n.d.). Retrieved 02 16, 2016, from jwebsocket:

http://jwebsocket.org/

Kegel, D. (2014, February 05). The C10K problem. Retrieved

March 22, 2016, from Dan Kegel's Web Hostel:

http://www.kegel.com/c10k.html

Lee, W.-C., Hu, Q., & Lee, D. L. (1999). A study on channel

allocation for data dissemination in mobile. ACM/Baltzer

Journal of Mobile Networks and Applications, Volume 4

issue 2 , 2.

Liu, D., & Deters, R. (n.d.). The Reverse C10K Problem for

Server-side.

Liu, Q., & Sun, X. (2012). Research of Web Real-Time

Communication. International Journal of Communications,

Network and System Sciences , 2-3.

Lubbers, P., Albers, B., & Salim, F. (2010). Using the HTML5

WebSocket. In P. Lubbers, B. Albers, & F. Salim, Pro HTML5

Programming (pp. 138-139). United States of America:

Apress.

PHP-Websockets. (2013). Retrieved 01 19, 2016, from

GitHub: https://github.com/ghedipunk/PHP-WebSockets

Pimentel, V., Bolívar, U. S., & Nickerson, B. G. (2012).

Communicating and Displaying Real-Time Data with

WebSocket. IEEE Internet Computing (Volume:16 , Issue:

4) , 47.

Pivotal. (n.d.). Introducing RabbitMQ-Web-Stomp.

Retrieved March 22, 2016, from RabbitMq:

http://www.rabbitmq.com/blog/2012/05/14/introducing-

rabbitmq-web-stomp/

Rauch, G. (n.d.). SOCKET.IO 1.0 IS HERE. Retrieved March 04,

2016, from Socket.io: http://socket.io/

Saeta, B. (2014, 02 18). Why we love Scala at Coursera.

Retrieved 02 02, 2016, from Coursera:

https://building.coursera.org/blog/2014/02/18/why-we-

love-scala-at-coursera/

Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

164

Saygin, Y., & Ulusoy, O. (2012). Exploiting data mining

techniques for broadcasting data in mobile computing

environments. IEEE Transactions on Knowledge and Data

Engineering (Volume:14 , Issue: 6) , 1-2.

Scheirlinck, D. (2012). Wrench. Retrieved January 25, 2016,

from Wrench:

http://wrench.readthedocs.io/en/latest/index.html

Skvorc, D., Horvat, M., & Srbljic, S. (2014). Performance

evaluation of Websocket protocol for implementation of

full-duplex web streams. Information and Communication

Technology, Electronics and Microelectronics (MIPRO), 2014

37th International Convention on (pp. 1-2). Opatija: IEEE.

Thorson, P. (n.d.). zaphoyd/websocketpp. Retrieved March

26, 2016, from github.com:

https://github.com/zaphoyd/websocketpp

Tornado. (n.d.). Retrieved February 17, 2016, from Tornado:

http://www.tornadoweb.org/en/stable/

Vos, J. (2013). JSR 356, Java API for WebSocket. Retrieved

03 11, 2016, from Oracle:

http://www.oracle.com/technetwork/articles/java/jsr356-

1937161.html

W3C. (2015, February 03). Server-Sent Events.

W3C. (2012, September 20). The WebSocket API.

W3C. (2014, January 30). XMLHttpRequest Level 1.

WebSocket Support. (n.d.). Retrieved 01 16, 2016, from

Spring: http://docs.spring.io/spring/docs/current/spring-

framework-reference/html/websocket.html#websocket-

server

WebSockets - Quick Guide. (n.d.). Retrieved March 06, 2016,

from Tutorials point:

http://www.tutorialspoint.com/websockets/websockets_q

uick_guide.htm

WebSockets for PHP. (n.d.). Retrieved February 22, 2016,

from Ratchet: http://socketo.me/

Zhang, L., & Shen, X. (2013). Research and development of

real-time monitoring system based on WebSocket

technology. Mechatronic Sciences, Electric Engineering and

Computer (MEC), Proceedings 2013 International

Conference on (p. 2). Shengyang: IEEE.

