
Proceedings of 8th International Research Conference, KDU, Published November 2015

154

Integrating REST with RIA-Bus for Efficient Communication and Modularity
in Rich Internet Applications

NR Dissanayake1#, T Wirasingha2 and GKA Dias2

1University of Colombo School of Computing, Colombo 7, Sri Lanka
2Informatics Institute of Technology, Wellawatta, Sri Lanka

#nalakadmnr@gmail.com

Abstract— Rich Internet Applications give a rich set of

features and an enhanced user experience, but the

engineering of Rich Internet Applications comes with

complexities, mainly due to poor realization caused by the

lack of architectural formalism. If we can realize the

architectural properties of Rich Internet Applications well,

it might reduce the engineering complexities and the

development of Rich Internet Applications may too offer a

good experience. In this paper we discuss enhancing the

structure and modularity of our proposed concept RIA-

Bus, by integrating the customized version of the REST

style. We expect to evolve this hybrid style further to

come up with an abstract architectural style for Rich

Internet Applications.

Keywords— Rich Internet Applications, REST, RIA-Bus

I. INTRODUCTION

Rich Internet Applications (RIAs) have become popular

among users; and have gained the attention of the Web2

engineers over last decade (Lawton, 2008). The rich User

Interfaces (UI) and the faster responding nature can be

seen as main factors for the attraction for RIAs (Piero, et

al., 2010). The asynchronous communication mechanism

is the key, which enables the development of the rich

features in RIAs (Busch & Koch, 2009). There are multiple

approaches to implement the asynchronous

communication and the script-based approach has

become the main choice with its open-source, free and

plug-in-less features (Farrell & Nezlek, 2007). The

techniques and technologies used for script-based

approach have been evolved from the Asynchronous

JavaScript and Xml (AJAX) (Garrett, 2005) to Websockets

(Fette, 2011) throughout the last decade. However –

despite the popularity – the engineering of RIAs is still

suffering from complexities (Piero, et al., 2010) (Li &

Peng, 2012), hence the designing and developing the RIAs

are still complicated tasks (Preciado, et al., 2007).

REpresentational State Transfer (REST) architectural style

(Fielding, 2000) has become the de facto standard for the

Web2 applications, especially for designing and

developing the web services. REST can be used to

maintain the modularity of the applications – mainly for

the pattern based on Create, Read, Update, Delete

(CRUD) operations – applying its simple principle to the

Unified Resource Locator (URL) using the GET, POST, PUT

and DELETE form methods.

In our ongoing research we try to identify the

architectural complexities in RIAs and design an

architectural style for RIAs. We have introduced a

concept – in our ongoing research – named RIA-Bus

(Dissanayake, et al., 2015), to minimize the complexities

engaged in the asynchronous communication in AJAX

based RIAs. RIA-Bus helps to centralize the asynchronous

request handling in the server, thus increases the

simplicity and modifiability of the RIA.

In this paper we propose and discuss how the REST can

be integrated in to the RIA-Bus, to increase the

modularity of the server-side code. We expect that this

integration will provide adequate support for various

architectural and non-functional quality attributes, such

as evolvability, extensibility and customizability.

II. METHODOLOGY

A literature survey was conducted to gain the domain

knowledge of RIAs, web architectures, AJAX and other

asynchronous communication techniques and

technologies.

A cross-sectional survey was conducted to understand

the current state of the facts identified in the literature

survey. Targeted population was the individuals engaged

in RIA development; the data were gathered using a

structured questionnaire with closed end questions; and

the gathered data were analysed using statistical

methods, to derive knowledge.

Parallel to the surveys, we did run a series of experiments

to realize the RIA development and gain some empirical

Proceedings of 8th International Research Conference, KDU, Published November 2015

155

evidence within the domain. The experiments were

prototype based and conducted in an incremental

development. Issues were identified in each and every

iteration and some solutions were introduced. Findings in

early iterations were tested, refined and used in later

iterations. The empirical evidence was utilized in deriving

an architectural style for RIAs. For the client-side

development JavaScript (JS) and jQuery; for the server-

side development PHP; for the database development

MySQL; and AJAX for the asynchronous communication

technique were used. Locally installed XAMPP tool was

used for Apache web server and MySQL database server.

III. DISCUSSION

In the literature survey we identified some facts, which

affect the complexity of the RIA engineering; and we

noted that the lack of architectural formalism for RIAs as

the major fact (Mesbah & Deursen, 2007). Lack of Model-

View-Controller (MVC) separation (Cheung, et al., 2007.

December 17-20.); additional learning curves of the new

frameworks and libraries; and need for identification of

proper tools; are some other facts we identified

throughout the literature survey (Dissanayake, et al.,

2013).

Analysing the data gathered in the cross-sectional survey,

we derived correlation between the number of AJAX

features per page and the difficulty level of implementing

the AJAX features; such that when the number of AJAX

features increases, the level of difficulty increases

proportionally (Dissanayake & Dias, 2014).

While conducting the experiments, we identified that the

asynchronous communication handling is done in a vague

manner, and that leads to have complex/ad-hoc

structures of files and coding, which are difficult to

maintain. Therefore a concept named RIA-Bus, a server-

side component was introduced, which is responsible for

handling the asynchronous communication between the

client and the server (Dissanayake, et al., 2015). It helps

to centralize the asynchronous request handling and the

controlling in the server efficiently, hence support the

maintenance.

In this paper we discuss the results of the experiments

conducted for testing the concept RIA-Bus further. When

testing the RIA-Bus in multiple prototypes, we identified

some drawbacks as follow.

As the application grows with the number of modules

and asynchronous requests, the algorithm in RIA-Bus

becomes complex, thus difficult to manage. It may lower

the evolvability and the ease of code maintenance of the

RIA. Furthermore, we noted that the exposure of the URL

of the RIA-Bus – in the client-side code – might introduce

some security loop-holes, thus it is not a good practice.

To address these drawbacks we tried incorporating two

techniques. The first technique is, enabling the access to

the RIA-Bus via a common index file in the server’s model

directory (Dissanayake & Dias, 2014), without exposing

the actual URL of the RIA-Bus in the client-side code. This

improves the security, and allows a better management

and usage of the RIA-Bus. The second technique is,

integrating the REST style to enhance the structural

properties of the communication, therefore increase the

modularity of the internal algorithm of the RIA-Bus.

The figure 1 illustrates the abstract algorithm of the

asynchronous communication processing, utilizing the

two proposed techniques.

Figure 1: Abstract algorithm of the REST integrated RIA-

Bus

Proceedings of 8th International Research Conference, KDU, Published November 2015

156

A. Common index file

When the RIA-Bus is used, all the AJAX requests are

directed to a dedicated file, which is assigned for the RIA-

Bus. As the system grows, the developers can maintain

separate files for multiple RIA-Buses for different

modules. Then the JavaScript in AJAX engine has to use

the direct URLs for these dedicated RIA-Bus files. There

are two drawbacks here 1) there will be multiple URLs to

maintain and 2) the physical addresses of these files are

exposed to anyone, which is not a good practice.

Figure 2: path to the common index file

To the end of the URL of this common index file in the

model directory, we add two additional parameter

segments for the AJAX requests, as shown in figure 3. The

first segment defines the module and the second

segment defines the ID(s) to be processed for the

request. If the IDs section is not used, it should be set as

null.

Figure 3: URL to RIA-Bus

Using a small PHP code snippet in the index file as show

in figure 4, the data in the parameter segments can be

extracted. According to the first URL parameter, the

module can be identified and the RIA-Bus for that module

can be loaded.

Figure 4: Sample PHP code snippet for the index file in

model directory

B. Customized REST version

REST uses four form methods – GET, POST, PUT and

DELETE – to define the CRUD pattern. Both POST and PUT

are used to submit complete form data other than ID(s).

Since we use specific URL segments to add more details

to the request, we customized the REST to use only GET,

POST and DELETE form methods. We suggest to identify

the CRUD based operation, combining the form methods

with the ID(s) segment of the proposed URL. The details

related to the customized REST style and the CRUD

operations are shown in the table 1.

According to the first URL segment, the module is

identified – as discussed under the common index file

section. The GET form method is used for reading data;

POST is used for both inserting and updating entries; and

the DELETE is used for removing/deleting entries. Then

the availability of the second URL segment is used to add

more meaning to the request.

When the second URL segment is null, it’s considered as

read all; or Insert new entry/entries; or delete all entries.

When the ID(s) is/are specified, the request will be

processed for the specified ID(s). If there are multiple IDs

in the second URL segment, they can be separated using

the “&” character, like used in the query string. When the

second URL parameter is not null, it is considered as

reading or updating or deleting the entry/entries

specified by the ID(s). This customized version of the

REST style provides more abstract semantic for the RIA-

Bus and preserves the consistency of the pattern in the

combination of the form methods and the information

segments in the proposed URL.

Table 1: Customized version of REST

Form

method
URL Operation

GET testModel/index.php/User/null Read all users

GET testModel/index.php/User/1&2 Read/search

specific user(s)

[Ids 1 and 2]

POST testModel/index.php/User/null Create new user

POST testModel/index.php/User/1&2 Update specific

user(s)

[id 1 and 2]

DELETE testModel/index.php/User/null Delete all users

DELETE testModel/index.php/User/1&2 Delete specific

user(s)

[id 1 and 2]

<modelDirectory>/index.php

modelDirectory/index.php/User/null

 path to index file Module ID(s)

modelDirectory/index.php/User/001&002

<?php

$segments =

 explode('/',

trim(parse_url($_SERVER['REQUEST_URI'],

 PHP_URL_PATH), '/'));

$module = $segments[count($segments) - 2];

$ids = $segments[count($segments) - 1];

if($module == "User")

{

 include("RIABusUsers.php");

}

?>

Proceedings of 8th International Research Conference, KDU, Published November 2015

157

Figure 5 contains a sample PHP code for the RIA-Bus for

the module User. In this RIA-Bus, only the classes

necessary for the module User are loaded. According to

the form method and the availability of the ID(s), the

CRUD operation is determined as in table 1. Form data

need to be utilized when the form method is POST only.

Then the POST super global variable is used to read the

data from the request, and they can be directly passed as

arguments to the parameters of the methods of the

module class(es).

Figure 5: Sample PHP code for the RIA-Bus of the module

User

IV. CONCLUSION AND FUTURE WORK

RIAs need a more abstract and standard architectural

formalism, which describes its characteristics clearly –

which are mainly related to the asynchronous

communication – to overcome the complexities engaged

in the engineering of the RIAs. Asynchronous

communication processing in the server-side is a critical

area, which creates a “difficult to manage” sections in

RIAs. We have proposed a concept to standardize the

asynchronous communication processing, using a

centralized component named RIA-Bus. The RIA-Bus lacks

in modifiability related requirements – mainly the

evolvability. When the RIA evolves with modules and

features, the RIA-Bus also grows and the maintainability

may decrease. Hence we integrate a customized version

on REST style with a common index file in the model

directory, to have a more controlled development of the

asynchronous request handling, and enhance the support

for the architectural related non-functional quality

attributes such as evolvability, extensibility and

customizability.

This is still an ongoing research, and in future we expect

to add more constraints into this REST integrated RIA-Bus

model and design more abstract and complete

architectural model for the RIAs, to reduce the

complexities by increasing the realization.

 REFERENCES
Busch, M. & Koch, N., 2009. Rich Internet Applications -
State-of-the-Art, Munchen: Ludwig-Maximilians-
Universitat.

Cheung, D. W., Lee, T. Y. & Yee, P. K., 2007. December 17-
20.. Webformer A Rapid Application Development Toolkit
for Writing Ajax Web Form Applications. Bangalore, India,
s.n., pp. 248-253.

Dissanayake, N. R. & Dias, G. K. A., 2014. Best Practices
for Rapid Application Development of AJAX based Rich
Internet Applications. COlombo, s.n., pp. 63-66.

Dissanayake, N. R. & Dias, G. K. A., 2014. What does the
AJAX Rich Internet Applications need to support the Rapid
Application Development. Sydney, Australia, s.n., pp. 1-4.

Dissanayake, N. R., Dias, G. K. A. & Jayawardena, M.,
2013. An Analysis of Rapid Application Development of
AJAX based Rich Internet Applications. Colombo, Sri
Lanka, s.n., p. 284.

Dissanayake, N. R., Dias, G. K. A. & Ranasinghe, C., 2015.
RIA-Bus: A conceptual technique to facilitate the AJAX-
based rich internet application development. Badulla, Sri
Lanka, s.n.

Farrell, J. & Nezlek, G. S., 2007. Rich Internet Applications
The Next Stage of Application Development. Cavtat,
Croatia, s.n., pp. 413 - 418.

Fette, I., 2011. The WebSocket Protocol, s.l.: Internet
Engineering Task Force.

Fielding, R. T., 2000. Architectural Styles and the Design
of Network-based Software Architectures, Irvine:
University of California.

Garrett, J. J., 2005. Ajax: A New Approach to Web
Applications. [Online]
Available at: http://www.adaptivepath.com/ideas/ajax-
new-approach-web-applications

Lawton, G., 2008. New Ways to Build Rich Internet
Applications. Computer, August, 41(8), pp. 10 - 12.

Li, J. & Peng, C., 2012. jQuery-based Ajax General
Interactive Architecture. Beijing, s.n., pp. 304-306.

<?php

include("ModelUsers.php");

$userObj = new Users();

if($_SERVER['REQUEST_METHOD']=="POST"

&& ids=="null")

{

 $userObj->insertUser($_POST["name"]);

}

if($_SERVER['REQUEST_METHOD']=="DELETE")

{

 $userObj->deleteUser(ids);

}

?>

Proceedings of 8th International Research Conference, KDU, Published November 2015

158

Mesbah, A. & Deursen, A. v., 2007. An Architectural Style
for AJAX. Mumbai, s.n.

Piero, F., Gustavo, R. & Fernando, S.-F., 2010. Rich
Internet Applications. Internet Computing, IEEE, 14(3),

pp. 9-12.

Preciado, J. et al., 2007. Designing Rich Internet
Applications with Web Engineering Methodologies. Paris,
IEEE, pp. 23-30.

