
Proceedings of 8th International Research Conference, KDU, Published November 2015

148

A Comparison of the Efficiency of Using HTML over XML and JSON for the
Asynchronous Communication in Rich Internet Applications

NR Dissanayake1#, D De Silva2 and GKA Dias1

1University of Colombo School of Computing, Colombo 7, Sri Lanka
2Informatics Institute of Technology, Wellawatta, Sri Lanka

#nalakadmnr@gmail.com

Abstract— Rich Internet Applications use XML or JSON to
format the data in asynchronous communication, which
engaged a serialization process in the server and a de-
serialization process in the client. If we use HTML to
format the data it can get rid of the de-serialization
process and make the development easier. In this paper
we compare the efficiency of using HTML over XML and
JSON, for asynchronous communication in Rich Internet
Applications, by the means of time and the size of the
data. Based on the results, we expect to introduce a set a
facts to consider when selecting the technique /
technology for the asynchronous communication in Rich
Internet Applications.

Keywords— Rich Internet Applications, Asynchronous

communication, HTML, XML, JSON

I. INTRODUCTION

 In this era of Web2, Rich Internet Applications (RIAs)

have gained the demand of the users, with enhanced

user experience via rich User Interfaces (UI), and faster

responds (Lawton, 2008). Asynchronous communication

in RIAs between the client and the server plays a major

role in providing rich features, which respond faster

(Busch & Koch, 2009). When the user initiates a process,

the client-side RIA engine sends an asynchronous request

to the server, and the server processes the request and

sends only the results – instead of a complete web page –

back to the client. The client-side app then processes and

shows the results on the current page by updating only

the necessary segments on the UI. This partial page

rendering nature along with the asynchronous

communication, enables developing rich UI components

and rich features in web applications (Busch & Koch,

2009).

The data is sent from the client to the server as

parameters along with the request, using GET or POST

form methods. The respond from the server to the client

may contain larger data set(s), where the client is

supposed to understand and process the data; and

display information on the UI. Extensible Markup

Language (XML) (Bray, et al., 2006) or JavaScript Object

Notation (JSON) (T. Bray, 2014) is used to ensure a good

structure and semantic of the data exchanged in both

request and respond of the asynchronous

communication.

XML had originally been introduced to define structure(s)

for data sets in storing and communication of data. It

uses a nested arrangement of elements to provide

structures for data; and uses Attributes to describe them

further. The usage of XML spreads over a larger domain,

but here we limit its scope to the use in the asynchronous

communication of RIAs.

In web applications’ data communication process, the

time taken for the communication and the size of the

data communicated are two main factors to be

considered. Larger data sets introduce traffic in the

network and may affect the speed of the communication

too. Since the size of the XML data set is considered

large, JSON has been used as a better solution for the

data communication in web applications. JSON is a light

weighted and text based format, with a small set of

formatting rules to form a portable set of structured

data. And JSON was proven that it is better than XML in

data communication (Lin, et al., 2012).

Despite the technology used for the asynchronous

communication, the process contains the following steps

in the processing algorithm. The client sends the request;

and the server processes the request and prepares the

respond by serializing the data, which means preparing

the XML or JSON structure of the data. Then the server

sends the serialized data to the client and the client de T

serialize/parse/extract data from the XML or JSON

structure and re-formats them to be shown on the UI.

Finally the client performs the partial update of the UI

and renders the information to the user. Figure 1 shows

the steps of the abstract algorithm of the asynchronous

communication process.

Proceedings of 8th International Research Conference, KDU, Published November 2015

149

In our ongoing research, we do experiment for better

techniques to simplify the engineering of RIAs. Our main

focus is to reduce the complexities by increasing the

realization of the RIAs, using an abstract RIA architecture

(Dissanayake & Dias, 2014). While conducting the

experiments, we noted that using HTML structures for

asynchronous communication can minimize some

complexities in the asynchronous communication

algorithms; hence it could make the development easier.

Therefore we conducted this research – parallel to the

main research – to compare the efficiency of using the

HTML over XML and JSON by the meanings of

communication time and the size of data communicated.

The methodology is presented in section II, and the

discussion of the results is presented in section III with

some criteria to be considered when selecting the

communication technique. We conclude our findings in

section IV mentioning the future work.

Figure 1: The steps of the abstract algorithm of

Asynchronous communication process

II. METHODOLOGY

Here we discuss the methodology of the research under

the title of this paper, excluding the details of the main

on-going research.

For the comparison of the efficiency of the HTML over

XML and JSON, we developed a small tool with following

features. The tool sends a request to the server on a click

of a button. There are 3 different buttons for HTML, XML

and JSON and 3 dedicated methods in the server to use

the specific technique to serialize the data. The tool reads

the number of iterations and the number of entries as

inputs. The request is sent as an AJAX request using the

GET method, querying for a set of data. Server processes

the request by reading a set of data from the database

and serializing the data set using the demanded

technique – according to the button used to initiate the

communication – and sends the respond back to the

client. Once the client receives the data set, it is

processed and displayed in a table on the page. Figure 2

shows a section of the UI of the tool.

For the client-side development JavaScript and jQuery

were used. The server-side was developed using PHP.

MySQL was used as the database server and the Apache

server was used to host the tool. For the asynchronous

communication, AJAX and a RIA-Bus (Dissanayake, et al.,

2015) were used.

Figure 2: A section of the UI of the testing tool

First we conducted the experiments in the local host.

Then to expand the scope to get a better view, we

conducted the same set of experiments again using a

remote server. The communication with the remote

server was done in two different modes, 1) via a proxy

and 2) using a direct connection. Tables 1, 2 and 3 include

Proceedings of 8th International Research Conference, KDU, Published November 2015

150

the specifications of the technologies and platforms used

in the three environments.

Table 1: Using localhost

Specs Client Server

Processor
Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz
2.30GHz

RAM 4GB

Link Local

OS Windows 8.1 (64)

Platform Chrome Apache/MySQL [XAMPP]

We measured the time taken for the serialization (in

micro-seconds) in the server, de-serialization (in

milliseconds) in the client, and the total time duration (in

milliseconds) for the complete process. Additionally we

measured the size of the data set (in bytes) sent from the

server to the client in each request.

To have a better understanding on how the time

efficiency vary with the size of the data, we conducted

the experiment for 4 different sizes of data sets, with

number of entries of the final table 10, 20, 50 and 100. To

have accurate measurements, the tool was developed in

a way to perform the same request-respond process for a

given number of iterations and calculate the average. We

did set the tool to perform the same request-respond

cycle for 10 times and get the averages of the time

durations.

Table 2: Using remote server via proxy server

Specs Client Server Proxy

Processor

Intel(R)
Core(TM) i5-
4200U CPU @
1.60GHz
2.30GHz

32 CPU cores Intel Quod
Core
2.16ghz

RAM 4GB 32GB 4GB

Link

LAN-Ethernet Internet Internet:-
ADSL
LAN:-
Ethernet

OS

Windows 8.1
(64)

Linux -
3.12.35.141886
8052,
Architecture -
x86_64

Endian 2.4.1

Platform

Chrome Apache version
- 2.2.29, PHP
version 5.4.24,
MySQL - 5.5.42-
37.1-log

Endian
firewall

Table 3: Using remote server directly

Specs Client Server Dongle

Processor

Intel(R)
Core(TM) i5-
4200U CPU @
1.60GHz
2.30GHz

32 CPU cores

RAM 4GB 32GB

Link USB Internet 3G - HSPDA

OS

Windows 8.1
(64)

 Linux -
3.12.35.14188
68052,
Architecture -
x86_64

 Service
provider –
Mobitel Sri
Lanka

Platform

Chrome Apache
version -
2.2.29, PHP
version
5.4.24,
MySQL -
5.5.42-37.1-
log

III. DISCUSSION

Here we discuss the efficiency of performance under two

categories, the time taken for processing and the size of

the data communicated.

A. Time taken for processing

In the usage of HTML for communication, the

construction of the HTML table structure in the server is

considered as the serialization process. The de-

serialization process in the client is limited just to

displaying the received HTML content on the UI, by

inserting the complete HTML table structure – which is

received as the data set from the server – in to a division

element.

Figure 3: Complete process time comparison in Localhost

Proceedings of 8th International Research Conference, KDU, Published November 2015

151

1).Localhost: For all serialization, de-serialization and

complete process time, JSON performed best, and HTML

is just behind JSON. XML exhibits a noticeable lack in

performance. Figure 3 shows the complete process time

comparison in localhost.

2) Remote server via proxy: Similar to the results in

localhost, for the serialization, de-serialization and

complete process time, JSON performed best, and HTML

performs better than XML. Figure 4 shows the complete

request time comparison when the remote server is used

via proxy.

Figure 4: Complete process time for remote server via

proxy

3) Accessing the remote server directly: In separate

serialization and de-serialization time durations, similar

to the other environments JSON has performed best,

HTML is almost similar to and behind the JSON, and

better than XML.

But for the complete process time in this environment,

some cases show different behaviours than in other two

environments. In the cases of 10, 50 and 100 entries,

XML has performed best for the complete process time.

In the case of 20 entries, HTML has performed best.

These results does not show any pattern as in other two

environments, but all the time durations of the complete

process are lower than the other two environments,

which means the efficiency is higher.

Figure 5: Complete process time for remote server

accessed directly

B. Size of the data communicated

When considering the experiment series using the

localhost, since both the server and the client are in the

same platform, we did not measure the size of the data

communicated. In both the cases of accessing the remote

server directly and via the proxy server, the results were

identical. Figure 6 shows the results of the sizes of the

communicated data sets, when the remote server is

accessed directly.

Figure 6: Data size when remote server accessed directly

As expected, JSON produced the data set with the lowest

size, then XML and HTML produced the data set, which

has the highest size. In the case of 100 entries, the size of

Proceedings of 8th International Research Conference, KDU, Published November 2015

152

the communicated HTML data set is almost double the

size of the JSON data set.

C. Analysis and the advantages of using HTML in

asynchronous communication

The asynchronous communication in RIAs is limited only

to the data sets necessary to display the required

information, instead of loading complete page(s). In the

requirements of displaying larger data sets in

grids/tables, RIAs use pagination pattern (Anon., 2009),

hence a smaller number of entries like 10 to 20 are

displayed at a time. When a new data grid page is

requested, only the data set need for the particular data

grid page will be sent by the server to the client. Even

though we conducted the experiments for 50 and 100

entries, it was only to identify the deviation(s) of the

efficiency with the size of the data, and we presented the

results just for the knowledge. For the conclusions we

utilize the results of the 10 and 20 entries cases only, as

our primary target of the research is comparing the

efficiency of the techniques for the asynchronous

communication in RIAs.

Analysing all the results of the series of the experiments,

for the time efficiency we can highlight that the HTML is

efficient than XML and performs very close to JSON. For

the data size efficiency, HTML performs lower than both

XML and JSON, but it is limited to less than 100 bytes. We

do not think this as a drawback to be emphasized,

according to the greater power of the available

technologies and resources nowadays, such as faster

communication technologies like 3G or 4G and higher

bandwidth of the servers and networks.

When the HTML is used for the asynchronous

communication, the de-serialization is limited just to

displaying the data on the UI, without any parsing or

further processing, hence it reduce the work load in the

client-side development.

Furthermore, when the view’s presentation of the data

set needs to be modified, it needs only the modifications

in the server-side code, since there is no parsing in the

client-side. Therefore, the client’s code does not need to

be modified as the server code changes for the particular

data set. This decreases the coupling between the client

and the server, thus enhances the modifiability property

of the RIA.

D. Facts to consider when selecting HTML in

asynchronous communication

The time is a critical factor, especially when it comes to

real time communication like in stock market related

ecommerce systems. If the time is a critical factor and

even few tens of milliseconds matter in the system, it is

advised to select JSON over HTML. On the other hand,

RIAs with AJAX based asynchronous communication use

the request-respond model, hence not suitable for time

critical systems, therefore before the data formatting

techniques, had better consider better communication

technique(s) like web socket and/or other critical

resource factors like hardware, processing, bandwidth,

etc...

When the system has a large client base and/or high

amount of communication needs to be done, but the

server bandwidth is limited, then it is not recommended

to use the HTML for the asynchronous communication.

In critical situations where even less than 100 bytes and

100 milliseconds are substantial, the JSON might be used,

but using JSON lacks in modifiability than HTML in the

terms of RIAs

IV. CONCLUSION

We can recommend the use of HTML for the

asynchronous communications in RIAs, as it increases the

modifiability of the RIA. But some other time and

bandwidth related facts also should be considered in

critical situations.

In future, utilizing the advantage of absence of client-side

parsing – when the HTML is used – we hope to derive

some patterns in client-side asynchronous

communication processing algorithms. And we expect to

introduce more abstract and generic algorithms for forms

and grid based Create, Read, Update, and Delete (CRUD)

operations in RIA. Extending this idea – of using the

abstract algorithms – we hope to introduce a JS library to

minimize the development work load in the client-side.

IV. REFERENCES
Anon., 2009. Research and Implementation of Pagination
Algorithm over Massive Data Based on Ajax Technology.
Wuhan, IEEE, pp. 1-4.

Bray, T. et al., 2006. Extensible Markup Language (XML),
s.l.: W3C.

Proceedings of 8th International Research Conference, KDU, Published November 2015

153

Busch, M. & Koch, N., 2009. Rich Internet Applications -
State-of-the-Art, Munchen: Ludwig-Maximilians-
Universitat .

Dissanayake, N. R. & Dias, G. K. A., 2014. Essential
Features a General AJAX Rich Internet Application
Architecture Should Have in Order to Support Rapid
Application Development. International Journal of Future
Computer and Communication, 3(5), pp. 350-353.

Dissanayake, N. R., Dias, G. K. A. & Ranasinghe, C., 2015.
RIA-Bus: A conceptual technique to facilitate the AJAX-

based rich internet application development. Badulla, Sri
Lanka, s.n.

Lawton, G., 2008. New Ways to Build Rich Internet
Applications. Computer, August, 41(8), pp. 10 - 12.
Lin, B., Chen, X., Chen, Y. & Yu, Y., 2012. Comparison
Between JSON and XML in Applications on AJAX. s.l., IEEE
Computer Society, pp. 1174-1177.

T. Bray, E., 2014. The JavaScript Object Notation (JSON)
Data Interchange Format, s.l.: Internet Engineering Task
Force (IETF).

